

Visual MaxFrame

A Public Domain Application Framework for Visual FoxPro

Reference Guide

version 2.0

MaxTech, Inc.

8721c Plantation Lane, Suite 302

Manassas, VA 20110

703-369-1759

703-369-1577 fax

Copyright Notice

Copyright (c) 1996 (Public Domain) MaxTech.

All source code and documentation contained in X3FWMAIN and the Visual MaxFrame (VM) "application framework" were developed at MaxTech, Inc. and have been placed into the public domain. You may use, modify, copy, distribute, and demonstrate any source code, example programs, or documentation contained in X3FWMAIN and the VM "application framework" supporting files freely without copyright protection. All files contained in X3FWMAIN and the VM "application framework" supporting files are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. In no event shall its authors, contributors, or distributors be liable for any damages.

The Visual MaxFrame (VM) files are as follows, and are subject to change without notice:

X3FW.VCX

X3FW.VCT

X3FWLIBS.VCX

X3FWLIBS.VCT

X3FWPPOP.VCX

X3FWPPOP.VCT

X3FWMAIN.MNX

X3FWMAIN.MNT

X3FWMAIN.PRG

X3FWDATA.PRG

X3CNVCHR.PRG

X3CPEDIG.PRG

X3ERROR.PRG

X3GENPK.PRG

X3GETVER.PRG

X3SETCLS.PRG

X3WINMSG.PRG

X3WRPFRM.PRG

X2JSTFIL.PRG

X2SETLIB.PRG

X2WEXIST.PRG

Introduction

We at MaxTech, Inc, have developed the Visual MaxFrame application framework to standardize our Microsoft Visual FoxPro application development projects. It enables us to take advantage of Visual FoxPro’s OOP features, mainly abstraction and inheritance, to deliver more stable applications in less time, with simpler maintenance because of the single code base.

However, Visual MaxFrame is not “pure OOP”. We use procedural where appropriate and do not insist on using “business objects”, although you can certainly implement such ideas within this framework if you choose to do so.

We feel that experienced FoxPro 2.x developers will be comfortable with Visual MaxFrame in a relatively short time because they can easily transfer many of the techniques that worked in 2.x to VFP. Using Visual MaxFrame, you can continue to develop VFP applications that are based on activities (primarily forms) much as you did in FoxPro 2.x. The difference is that you can work from literally one code base, thanks to abstraction and inheritence. If you feel comfortable creating classes of “business objects”, you can implement them, too -- Visual MaxFrame provides high-level application services.

Our fundamental philosophy is to keep things simple. This is not to say that application development never involves complicated code. It certainly does, and there are some complicated/sophisticated features in Visual MaxFrame. Thanks to OOP, much of the complexity is abstracted and you don’t need to understand the details (until it comes time to debug!). But our application-development style is driven by the constant balancing of these goals:

Simplicity

Readability

Maintainability

Performance

Reuse

Oh, and clients/bosses are generally happier if, after all that, the end result actually works <g>! Just having the above list of design goals doesn’t guarantee success, and especially when designing generic functionalities like an application framework, there are always tradeoffs. The challenge is in achieving just the right balance, like knowing when to sacrifice a little speed for more readability or maintainability. Or vice versa.

In many cases, we opted for keeping all the code in one place (class definition) rather than in a multiple-object collaboration. When we had to make such decisions, we did so with the intention to make Visual MaxFrame as easy as possible for the average developer to use in a team environment, striving to keep the learning curve low. By the same token, we have frequently provided shell methods and “hooks” for adding any level of complexity you want for the features you need.

Visual MaxFrame is designed to provide a core set of services for object-oriented VFP applications. We do not include special Builders and Wizards or extensive prefabricated objects, but we view this as a benefit, because reliance on wizard-built components frequently limits your options to customize and extend them.

Visual MaxFrame is by no means the last word on frameworks. The list of features we intend to add/enhance will probably never be eliminated -- as we finish items we come across new things we’d like to have. We want Visual MaxFrame to contain as many of the features used in every application as possible. Since everything is built into class definitions, it is easy for you to add or modify to suit your needs while retaining whatever you like.

Since we use Visual MaxFrame for our VFP application development projects, some features of the framework are geared to our way of doing things. For example, some automatic features are based on our naming conventions. However, at every step, we have endeavored to make Visual MaxFrame as flexible as possible, to support any desired features; whenever we have code that is driven by some MaxTech, Inc. convention, we have documented it and provided for subclassing/overriding with whatever behavior you want.

What Visual MaxFrame is Not

Visual MaxFrame is not a “application generator”. It is intended for use by VFP developers creating custom applications that go beyond the capabilities of app-generators. We believe this approach also makes it easier to integrate your own classes and object designs than if we generated your application for you (as a starting point).

Visual MaxFrame vs Visual MaxFrame Professsional

Visual MaxFrame (VM) is what we sometimes refer to as “Level 1” of our framework. It is the part that is in the public domain. Visual MaxFrame contains all the files necessary to create the high-level framework itself and set the application wait state (READ EVENTS). The class libraries contain abstract classes, intended either for further subclassing or, in the case of the global “application objects”, if they contain exactly what you want you can instantiate them as-is. You can use Visual MaxFrame to provide a standardized framework for VFP application development.

Visual MaxFrame Professional (VMP) is what we sometimes refer to as “Level 2” of our framework. Visual MaxFrame Professional includes everything in Visual MaxFrame plus many specific classes, routines, and utilities:

data-entry form classes and components

data-entry grid classes and components

picklist form classes and components

classes of bound controls

library object classes

utility object classes

developer tool classes

library routines

builders and wizards

an example application built using Visual MaxFrame Professional components

full source code and documentation

Visual FoxPro 5.0 Support

While we designed most of the initial features of Visual MaxFrame/Professional in Visual FoxPro 3.0b, we have made every effort to:

make Visual MaxFrame compatible with either version of Visual FoxPro

incorporate Visual FoxPro 5.0-specific features in such a way that they work in VFP 3.0b, too. For example, Visual MaxFrame Professional contains a data-entry grid class that supports pressing {DNARROW} from the last row of the grid to add a new record. Actually, the VFP 5.0 implementation needs enhancing because it lacks an accompanying event, so we’ve implemented a technique in VMP that works in both versions. Also, VMP contains a shortcut menu class that contains syntax for both VFP 3.0b and VFP 5.0, so that it works with either version, taking advantage of the new SHORTCUT keyword of the DEFINE POPUP command in VFP 5.0.

Acknowledgements

While I personally wrote and designed almost all of Visual MaxFrame, I couldn’t have done it without a lot of help. I’d like to acknowledge the following for their significant contributions:

Jack Gallagher, President of MaxTech, Inc., and the person who made it financially possible to spend a large amount of time developing Visual MaxFrame, originally intended strictly for use internally by MaxTech developers and for use in our Visual FoxPro training classes.

Tom DeMay, Director of Technical Development/Manassas branch at MaxTech, Inc. Tom gave me constant feedback and ideas, and developed or designed some important features of Visual MaxFrame Professional.

Ed Lennon, senior developer at MaxTech, Inc. Ed developed some sections of Visual MaxFrame, and gave me invaluable input as he developed VFP applications (and patiently retrofitted version changes).

Valarie Rollins, MaxTech, Inc. developer who did some excellent testing.

The entire MaxTech, Inc. staff, many of whom have directly or indirectly helped in the development, marketing, and production of Visual MaxFrame.

Kelly Conway, beta tester extraordinaire. Kelly was far and away the most helpful participant in the “beta” testing as Visual MaxFrame evolved into a commercial product (Visual MaxFrame Professional). Kelly contributed a wealth of suggestions and ideas, and made a great sounding board when I needed one.

Steven Black, who I consider one of the (if not the) most talented Visual FoxPro developers in the world. While Steven didn’t have a lot to do with individual features, he several times took time out of his busy schedule to offer input which, was not only invaluable; it was always right on the mark. He turned me on to “hooks”, patiently answering questions and providing examples.

Other beta testers, Jim Condon, Mike Yearwood, Dan Wellisch, Chaim Caron, Antonio Lozada.

Microsoft Corporation, first for developing Visual FoxPro and blessing it with so many great features. And for inviting me to participate in the alpha and beta for VFP 3.0, VFP3.0b, and VFP5.0.

The Fox Community at large; many of the ideas they generously shared with all of us are incorporated in Visual MaxFrame.

-- Drew Speedie

Installation

Visual MaxFrame is available for download from several CompuServe forums and Internet sites. All files are contained in a single .ZIP file, MTVFPAF1.ZIP.

Installation is simple: un-zip the contents of MTVFPAF1.ZIP into any directory/folder of your choosing.

We recommend creating a directory/folder just for Visual MaxFrame; name it as you wish. When developing a Visual MaxFrame application, you’ll want this directory in your VFP path.

In addition to the X3*.* files that comprise the framework, the following document files are included:

VM.DOC -- this document

VMHOT.DOC -- supplementary documentation not available as this reference guide went to print

VMREVHST.DOC -- a complete revision history, beginning with version 1.0

README1.TXT -- a README file with brief installation instructions

VFP 3.0b chores

The X*.VCX and X*.SCX files are in VFP 3.0b format and need no further manipulation to put them to work.

VFP 5.0 chores

The X*.VCX and X*.SCX files are in VFP 3.0b format. Once you have them installed in your desired directory, you must recompile them:

compile classlib *.vcx

compile form *.scx

Running under both VFP 3.0b and VFP 5.0

Visual MaxFrame is compatible with both versions of Visual FoxPro, but the compiled object code is different for each platform.

If you need to run Visual MaxFrame in both versions concurrently, you’ll need a separate copy of Visual MaxFrame in each of 2 directories, one compiled in VFP 3.0b and the other compiled in VFP 5.0.

If you work in both VFP versions, but only one at a time, you can go with a single copy of Visual MaxFrame in a single directory as long as you recompile X*.VCX and X*.SCX the first time you switch developement in the other version.

Naming Conventions

This section describes the naming conventions we use at MaxTech, Inc. for Visual FoxPro application development projects. These naming conventions are used throughout Visual MaxFrame and Visual MaxFrame Professional. You do not need to adhere to these naming conventions to use Visual MaxFrame, but we document them here to acquaint you with the standards used throughout the framework. This section also serves to document the naming conventions we expect our in-house developers to implement.

The idea behind any naming convention is that it exist and be consistent. Even a second-rate naming convention is better than none at all. Our particular naming convention has evolved and been refined over many years of FoxPro application development. If you have Visual MaxFrame Professional, you can find examples of all these conventions in the VM example application.

Our basic convention is that all application-specific files begin with a common 2-character prefix describing the application. If the application is an accounting app for a particular client, say “Joe’s Trucking”, the 2-character prefix might be JT. All files that are specific to that application begin with JT. We find that this convention makes it easy to tell what files in a given directory/folder belong to a specific app.

Please note that we do not recommend using long filenames in Visual FoxPro applications. We continue to develop applications for clients who require the 16-bit operating systems. Even applications written in Visual FoxPro 5.0 (or in VFP3.0b and intended to be run in 32-bit Windows) require extra care to process embedded spaces in file/folder names, so we recommend avoiding the practice altogether for VFP application files.

Projects

For each application, there is generally one main Project Manager file (although larger applications may have more than one project/application). The main project file is named with the 2-character application prefix plus the .PJX extension. So the Joe’s Trucking accounting application main project would likely be named JT.PJX.

Larger applications may be comprised of one main project and several individual “sub-projects”, each of which is a module or mini-application. Each sub-project is usually assigned its own 2-character prefix for use in naming its specific files, including the .PJX file. The JT application could be comprised of GL/General Ledger, AR/Accounts Receivable, AP/Accounts Payable, PY/Payroll, etc. modules, each with its own .PJX file.

When it’s time to distribute the application, we generate an .APP/.EXE from the Project Manager. We accept the default name for the .APP or .EXE. In this example, we’d create a JT.APP/JT.EXE.

Main calling program

The main calling program for an application is always named using the 2-character application prefix plus “MAIN.PRG”. We use this convention to make it easier to selectively run either source code, an .APP, or an .EXE.

To run the source code:

DO xxMAIN

To run the .APP:

DO xx

This convention allows an .APP to reside in the same directory as the main calling program. If the main calling program was xx.PRG, then

DO xx

would always execute any .APP of the same name, not the .PRG version. If you’ve just modified your source code and forgotten that you have an .APP, you unintentionally run the .APP, and spend time wondering why you don’t see your modifications. Until you realize why and have to slap yourself upside the head.

CONFIG.FPW Files

We use the plural here because we generally use at least 2 CONFIG.FPW files per application:

CONFIG.FPW to be included in the Project/.APP/.EXE, with production settings

CONFIG.xxD containing settings for the development environment, unique to each developer’s workstation. The “xx” indicates the 2-character application prefix. This convention allows 2 coexistent CONFIG files in a single directory, and the CONFIG.xxD is specified via the -C command line switch in the shortcut/icon used to start a VFP session for the development of that particular application. CONFIG.xxD typically contains PATH and other settings specific to the development environment when working on that application.

Database Elements

Each item that can be named at the programmer’s discretion should follow these standards:

Databases

Each project has one main database, named by the 2-character application prefix. An Accounts Receivable application main database would likely be named AR.DBC.

Larger applications in particular may logically divide data into subsidiary/subordinate databases. These are named in some correspondingly logical fashion. For example, as described above, individual modules are frequently their own 2-character prefixes, and their main database named accordingly. Other databases might be shared between the modules and should be named in some logical fashion. The JT application might logically have one database for lookup/reference values used in each module; that database might be named JTREF.DBC.

Contained Tables

.DBF Name

Contained tables are named using the 2-character prefix of the database to which they belong. For example, the Accounts Receivable table of customers in the AR database might be named ARCUST.DBF.

Table Name

Contained tables can be assigned a long (up to 128-character) table name attribute, which is a feature that should be taken advantage of in Visual FoxPro. The ARCUST.DBF described above should probably have a table name of CUSTOMERS.

Contained Table Fields

We always name our fields with unique (throughout the system) field names. We accomplish this by naming each field for a specific table with the same first 3 letters plus an underscore, followed by a descriptive string of a reasonable length (taking advantage of long field names). What comes after the underscore is determined by the type of data contained in the field:

If the field is the Primary Key, its name is always the 3-character prefix, underscore, plus “PK”.

If the field is a Candidate Key, its name is always the 3-character prefix, underscore, descriptive string, plus “CK”.

If the field is a foreign key to another table, its name is always the 3-character prefix, underscore, 3-character prefix of the parent table, plus “FK”.

If the field contains a system-generate unique identifier which is used as part of a concatenated Primary Key expression, the field name is the 3-character prefix, underscore, plus “ID”. For example, a table may contain data from several different sites, each of which generates their own set of unique ID values. The Primary Key is a combination of the location/site plus the system-generated ID: index on Xxx_LocFK + Xxx_ID tag Xxx_PK.

If the field doesn’t fall into any of the above categories, what follows the underscore is simply a descriptive string.

For example, the AR module of the JT application likely has the above-described CUSTOMERS table plus an INVOICES (table name) table (ARINV.DBF) with fields like the following:

	Inv_PK 		Primary Key�	Inv_NumberCK 	Candidate Key�	Inv_CusFK		Foreign key to the CUSTOMERS table (see below)�	Inv_Date		Regular field

The CUSTOMERS table has fields like this:

	Cus_PK			Primary Key�	Cus_NameCK		Candidate Key�	Cus_CreditLimit	Regular field

We have found the following advantages to this naming convention:

All field names in the entire system/application are unique

It’s relatively easy to tell the table to which a field belongs

SQL-SELECT statements don’t need alias-prefixing to resolve ambiguity, are therefore shorter

SCATTER MEMVAR doesn’t overwrite same-name fields of different tables

Easy to do text search on all fields of a given table or a single field of a specific table

Contained Table Index Tags

We always use a structural .CDX to contain index tags for each contained table. Unfortunately, VFP doesn’t support long index tag names. This makes it impossible to follow our old convention of naming single-field-tags the same as their field name, since many field names are longer than 10 characters.

We do insist that index tags begin with the same prefix-plus-underscore as the fields of the table to which they belong. The remaining 6 characters are used to make the tag name as descriptive as possible.

Here are some further guidelines:

When an index tag expression is a single field, the tag name should logically be identical to the field name.

When the index tag is the Primary Key, its name is the 3-character-plus-underscore table prefix plus “PK”, even if it is comprised of a concatenation of fields.

All tables for which Rushmore optimization is required (most, if not all tables) contain an index tag on DELETED(). This tag is always named starting with the 3-character prefix, an underscore, and “Del”. For example, a typical CUSTOMERS table has a tag of Cus_Del:

index on DELETED() tag Cus_Del

Views

We name views with a prefix of “V_”, whether local or remote. If the view is a based on a single table, what follows the prefix is the Table Name of the table on which the view is based. For example, the AR database likely contains single-table views of the CUSTOMERS and INVOICES tables, named V_CUSTOMERS and V_INVOICES, respectively.

Free Tables

The naming convention is the same as it is for contained tables, except, of course, for the fact that long table names are not supported for free tables.

Free Table Fields

Field names all begin with a 2-character “mini-alias” prefix specified for the table, followed by an underscore. Then comes a descriptive string. Fields which are foreign keys end in a "trailing" underscore. If the CUSTOMERS and INVOICES tables described above were free tables, their structures would change to:

INVOICES�In_PK 		Primary key�In_Number 	Regular field�In_Cus_		Foreign key to the CUSTOMERS table (see below)�In_Date		Regular field

CUSTOMERS�Cu_PK		Primary key�Cu_Name		Regular field�Cu_CredLim	Regular field

Free Table Index Tags

We always use a structural .CDX to contain index tags for each free table. Tags whose index expression is a single field are always named the same as that field name. Tags always begin with the 2-character-plus-underscore prefix of the table to which they belong.

All tables for which Rushmore optimization is required (most, if not all tables) contain an index tag on DELETED(). This tag is always named starting with the 2-character-plus-underscore prefix plus “DELETED”. For example, a typical customers table has a tag of CU_DEL:

index on deleted() tag Cu_Del

Forms as .SCX files

All application-specific files begin with the application’s 2-character prefix. Most forms fall into one of the following categories. Those that don’t can be named as appropriate.

Picklist forms

Picklist form files are named with the 2-character application prefix, plus “PK” and a descriptive string. If the picklist form allows selection of a record in a single-table picklist, the descriptive string is the 3-character designation for that table (as indicated by the 3-character prefix used for its fields). For example, a picklist form designed to present a list of customers from the above-mentioned CUSTOMERS table would have a filename of ARPKCUS.SCX.

Data-entry forms

Data-entry forms are named with the 2-character application prefix, plus “DE” and a descriptive string. If the data-entry form is for maintaining a single table, the descriptive string is the 3-character designation for that table (as indicated by the 3-character prefix used for its fields). For example, a form designed to maintain the above-mentioned CUSTOMERS table would have a filename of ARDECUS.SCX.

Selection criteria forms

We frequently design what we call “selection criteria” forms, where the user can filter/retrieve subsets of data. These forms are named with the 2-character application prefix, plus “SC” and a descriptive string. If the selection criteria form works with a single table, the descriptive string is the 3-character designation for that table (as indicated by the 3-character prefix used for its fields). For example, a form designed to filter/retrieve records from the above-mentioned CUSTOMERS table would have a filename of ARSCCUS.SCX.

Form sets

As noted elsewhere, we do not recommend using form sets in applications.

Menus, Reports, Labels, Queries

All application-specific files begin with the 2-character application prefix and are followed by an appropriate descriptive string.

Programs

Each application usually incorporates a variety of .PRG types:

Application Programs

Application-specific programs are named beginning with the 2-character application prefix.

Library Routines

At MaxTech, our library routines all begin with an X followed by a number indicating the version of VFP required to use them:

X1*.PRG library routines can be used in any version of FoxPro back to FoxPro 1.02

X2*.PRG library routines can be used in any version of FoxPro back to FoxPro 2.0. There are some exceptions to this one, particularly X2*.PRG routines that work in FoxPro for Windows.

X3*.PRG library routines can be used in any version of Visual FoxPro.

Local Procedures

Local procedures take advantage of long procedure names (up to 128 characters) to describe their function.

Memory Variables

Memory variables are named according to the widely-implented “Hungarian notation” standards. The first character indicates scope, the second character indicates data type:

lnCount		local/numeric�lcAlias		local/character�plSuccess		private/logical�pdStartDate	private/date�ttStart		parameter/datetime�tuFlag		parameter/unknown�gaUsers		global/array�goObject 		global/object reference

See also the naming conventions for class/object properties.

We only use the “m.” prefix for memory variables when the memvar is a field name (usually created via SCATTER MEMVAR), in which case it is required to resolve the ambiguity of a memvar named the same as a field name.

Note that we have broken this convention for the global application objects in Visual MaxFrame, which are technically private memvars declared in X3FWMAIN.PRG but remain in scope for the life of the application, so are global in a sense. We drop the first character denoting scope from these application objects, distinguishing them from all other memvars in the application.

Visual Class Libraries, Object Elements

Each item that can be named at the programmer’s discretion should follow these standards:

.VCX files

Each application usually incorporates .VCXs of at least these 2 types:

Library .VCXs

At MaxTech, our library routines and library .VCXs all begin with an X followed by a number indicating the version of VFP required to use them:

X3*.PRG library routines can be used in any version of Visual FoxPro.

X5*.PRG library routines can be used in any version of Visual FoxPro back to VFP 5.0.

Application-specific .VCXs

Application-specific class libraries are named beginning with the 2-character application prefix.

Each new application usually starts with class definitions that are direct subclasses of class definitions in Visual MaxFrame. We usually store these in .VCXs named the same as the corresponding Visual MaxFrame class library. For example, an application-specific subclass of X3FW.VCX/ctrApp for the JT application would be stored in JTFW.VCX. The password-login form class would be subclassed from X3FW.VCX/frmLogin and stored in JTFW.VCX.

Class Definitions

We name all class definitions starting with the standard 3-character abbreviation indicating the VFP base class. You can find the complete list of standard abbreviations in Help/Technical Reference/Programming/Naming Conventions/Objects. Our implementation is readily evident by perusing the class definitions in X3FW.VCX. All form classes are named beginning with “frm”, all commandbutton classes are named beginning with “cmd”, etc.

We name each class in each hierarchy with a unique name. This is important because if two classes in a single class hierarchy have the same name, manual callbacks using the scope resolution operator can cause recursion or “confusion” because there are two classes with the same name. It’s for this reason we also do not use the Name of a class for the Name of an instance.

Properties

Since properties are synonymously referred to as “instance variables”, we name custom properties according to the same convention we use for memory variables, described earlier. The first-character denotes scope, in this case a lower-case I for “instance”:

icCaption			character�inVFPVersion		numeric�ilReadOnly		logical�iaList 			array�ioHook			object reference�iuValueOnGotFocus	unknown�..etc., as described in the Memory Variables section of the Naming Conventions topic.

Methods

Name custom methods with an appropriately-descriptive name.

Other elements

Any application-specific files not specifically covered in these conventions are named beginning with the 2-character application prefix.

Cursors

CREATE CURSOR and SQL-generated cursors are named descriptively, taking advantage of long alias names (up to 128 characters) where appropriate.

Graphics

.BMP, .ICO, and .CUR files are named using the 2-character application prefix as described throughout this section.

Fundamental Features

We (and sometimes other folks) sometimes refer to Visual MaxFrame as the “X3” framework because it is built on a set of programs and classes with filenames starting with “X3”. Our standard naming convention calls for all reusable library files to begin with “X” and be stored in a common “library” directory.

An object-oriented application framework typically provides a set of standard features that can be abstracted, freeing the application developer to concentrate on lower-level form and data designs. Services provided by application framework objects include:

Application setup

Managing the calling/instantiation of forms, including multiple-instance forms

User login and security

System menu installation

Basic system menu services

Application-level coordination of activities like SHUTDOWN, timed events, etc.

Application cleanup

First-level subclasses of the VFP base classes

Our goal in creating an application framework was to make it simple and easy to use, while still incorporating what we consider the vital features a framework should have. We have not “objectified” everything just for the sake of pure OOP. For example, VFP does not have menu classes and objects; we continue to use the Menu Designer to create our menus. We could have created objectified versions of all our procedural library routines, but from a performance and maintenance standpoint, we saw no reason to do so.

Architecture

Please note that there are many ways to architect an application framework. The most common ones use some sort of high-level “application object”, frequently making use of other high-level objects that are added as members of the single application object. For the sake of simplicity and flexibility, we have chosen to create each high-level object as a separate standalone entity. This allows us to make calls like the following to application objects:

oMenu.DoForm("MyForm")

oForms.RefreshSpecificForms("MyTable",THISFORM.DataSessionID)

instead of the equivalent calls when the menu and form manager objects are members of a global application object:

oApp.oMenu.DoForm("MyForm")

oApp.oForms.RefreshSpecificForms("MyTable",THISFORM.DataSessionID)

The global application objects are instantiated in a single main calling program that is actually a library routine, X3FWMAIN.PRG. Your main calling program fundamentally serves to pass parameters to X3FWMAIN.PRG, handing over the entire application execution to X3FWMAIN.PRG

X3FW.VCX

X3FW.VCX contains all of what we call our “Level 1” application framework class libraries. This is where we store

One “base” class per VFP base class. Our base subclasses of the VFP base classes contain features and behaviors we want for every instance of that base class.

The class definitions for the global “application objects”, described next. These global “application objects” are all instantiated in X3FWMAIN.PRG.

cusAppLibs -- The Application Libraries Class/Object

cusAppLibs is the class definition from which we instantiate our oLib application-level library object. You pass any number of class libraries to oLib on instantiation, and it AddObject()s one instance of each contained class definition as member objects. The individual “library objects” are available throughout the life of the application:

oLib.oDBCSvc.OpenTable("MyTable")

ctrApp -- The Application Class/Object

ctrApp is the class definition from which we instantiate our oApp application object. oApp contains global application-level properties and provides application services:

oApp.ReadEvents()

cusUser -- The User Object

cusUser is the class definition from which we instantiate our oUser application-level object. oUser handles user login and provides user services and information throughout the life of the application:

lcPassword = oUser.GetUserInfo("USR_PASSWORD")

cusForms -- The Forms Manager Object

cusForms is the class definition from which we instantiate our oForms application-level object. oForms handles form instantiation (and toolbar instantiation until oToolbars is completed) and provides form services and information throughout the life of the application:

oForms.DoForm("MyForm")

.SCX-Based Forms or .VCX-Based Forms?

In VFP, you can instantiate forms from .SCX files or .VCX files. Here are a few of the differences:

.SCX-based forms

can use the built-in DataEnvironment, making it easier to set and maintain ControlSource properties and Builder features

require one .SCX/.SCT per form

cannot be subclassed (but can be fairly easily converted to classes and then subclassed)

cannot protect properties and methods

can easily return a value from a modal form

.VCX-based forms

cannot use the built-in DataEnvironment but can AddObject() a .PRG-based DataEnvironment at runtime, which allows subclassing specific DataEnvironments

many forms can be stored in a single .VCX/.VCT file

can be easily subclassed

can protect properties and methods

require extra work to return a value from a modal form

A Word About Formsets

Visual MaxFrame does not currently support formsets. At MaxTech, Inc., we do not use formsets in production applications, preferring single forms with pageframes when we need to display more controls than will fit on a single form. Formsets not only make for a more complicated containership hierarchy, they consume more resources than single forms with pageframes.

cusToolbars -- The Toolbar Manager Object

cusToolbars is the class definition from which we instantiate our oToolbars application-level object. oToolbars handles toolbar instantiation and provides toolbar services and information throughout the life of the application:

oToolbars.DoToolbar("MyToolbar,MyTbrs.VCX",.t.)

cusMenu -- The Menu Object

cusMenu is the class definition from which we instantiate our oMenu application-level object. oMenu handles system menu installation and maintenance services throughout the life of the application:

oMenu.RequestClearEvents()

First-Level Subclasses of the VFP Base Classes

In addition to the application-level Visual MaxFrame classes listed above, X3FW.VCX contains one “base” class per VFP base class. Each “base” class provides a top-level abstract class for properties/methods we need in the entire hierarchy for that class.

The X3 Framework Files

All the X3 files are what we call “library files”. That is, they are all located in our main (read-only) library directory with the rest of our common/shared routines that we use across applications. You should install them in your library directory and make sure they are always in your FoxPro path during development.

Naming Conventions

We consider all the Visual MaxFrame files to be “library” files, reusable code that we store in our common library directory. As such, we use our normal “X3” prefix that designates library files compatible with VFP version 3.0 and forward.

We consider the files in our library that begin with “X3FW” to be Visual MaxFrame-specific files, although our framework classes frequently call X3*.PRG procedural library routines.

We name all class definitions starting with the 3-character abbreviation of the VFP base class, as described in the Technical Reference/Programming/Naming Conventions topic in the VFP online Help.

Required Files

While there is a considerable amount of total code in Visual MaxFrame, since most of it is in method code of our application-level objects stored in 2 .VCXs, there are not many required files.

Since we make calls to the PEMSTATUS(), version 3.0b of Visual FoxPro is required.

Class Libraries

Three class libraries contain class definitions that constitute Visual MaxFrame. X3FW.VCX is the heart of Visual MaxFrame; the other two provide utilties.

X3FW.VCX

As described above, X3FW.VCX contains our global application-level class definitions, plus one “base” class per VFP base class.

X3FWLIBS.VCX

X3FWLIBS.VCX contains class definitions for “library objects” -- objects created from custom classes that serve as a place to put method code for operations we find common to all applications and that are logically objects (as opposed to standalone .PRG library routines).

X3FWPPOP.VCX

X3FWPPOP.VCX utility classes that “push/pop” values. Use these classes within one method/program to “push” an item in the Init() and automatically “pop” the item in the Destroy().

Programs

One main calling program, X3FWMAIN.PRG sets up an entire application. While you could write your own similar main calling program, there’s not much point. You will need a small wrapper program to call X3FWMAIN.PRG, sending it appropriate parameters etc.

??MAIN.PRG

Your main calling program calls X3FWMAIN.PRG, sending it appropriate parameters. For an example of an ??MAIN.PRG, see the notes included at the bottom of X3FWMAIN.PRG.

X3FWMAIN.PRG

This program instantiates the global application objects and is the controlling program during the entire application “wait state”, READ EVENTS. Here is the basic program flow:

Receive parameters

Install a simple ON ERROR error handler until the global error handler is installed

Install any indicated splash screen

Instantiate the oLib application libraries object so that they are immediately available

Instantiate the oApp application object, including basic application setup and global error handler

Instantiate the oUser application-level object, including password login

Instantiate the oForms application-level object

Instantiate the oToolbars application-level object

Instantiate the oMenu application-level object, including installation of the system menu now that all other objects have been successfully instantiated. We always save menu installation until last so the menu doesn’t become visible/available until it can actually be used.

Execute the application wait state (READ EVENTS)

Release the application-level objects (which each contain any needed cleanup code in their Destroy() method)

Library Routines

The following library routines are in our XLIB library directory and are called by one or more of our application-level objects:

X3CNVCHR.PRG

X3CNVCHR.PRG is a library routine that converts the passed character string to a value of the passed data type.

X3CPEDIG.PRG

Returns a logical value indicating whether a particular object inherits from a particular class definition.

X3ERROR.PRG

Global error handler.

X2JSTFIL.PRG

X2JSTFIL.PRG is a library routine that strips off the path and (optional) extension from a passed file name string.

X2SETCLS.PRG

SETs CLASSLIB to the passed .VCX visual class library.

X2SETLIB.PRG

SETs LIBRARY TO the passed .FLL function library.

X2WEXIST.PRG

X2WEXIST checks to see if a Windows application is currently running with a passed main window title. We use this routine to deny multiple instances of our VFP applications, if necessary.

X3WINMSG.PRG

X3WINMSG is our basic messaging library routine. It is essentially a wrapper program to the MESSAGEBOX() function that is now native to VFP.

Databases

We recommend using databases and contained tables whenever possible. The main application database can be created by running the X3FWDATA.PRG utility, as long as you use our two-character prefix naming convention. If not, modify X3FWDATA.PRG to suit your needs.

Main database

Each application should have one main database, whether it accesses other databases or not. Our naming convention calls for a main database named the same as the two-character prefix for the application. For example, if we are creating an Inventory application, the main database might be named IN.DBC.

Other databases

Many large applications divide their data into several databases. Since VFP allows as many open databases as you want, divide your tables in whatever fashion you find logical. That said, we recommend using as few databases as possible, to reduce the need for explicit SET DATABASE TO commands required to use DBGETPROP(), which only retrieves information about the current database.

Tables

At a minimum, the main database must include system tables used by Visual MaxFrame objects, created at the beginning of the development effort. Add as many application-specific tables as you want.

The Visual MaxFrame required tables can be created by running X3FWDATA.PRG, as long as you use our two-character prefix naming convention. If not, modify X3FWDATA.PRG to suit your needs.

??SYSTEM.DBF/APPINFO

APPINFO contains one record per application setup/configuration item that can optionally be updated/maintained by the client.

The actual .DBF filename can be anything you want, but Visual MaxFrame expects a long table name of APPINFO. The fields created and populated in X3FWDATA.PRG are required for basic Visual MaxFrame features, but you can add as many additional records as you need. The required records are described in X3FWDATA.PRG and in The Application Class/Object section of this document.

??CONFIG.DBF/APPCONFIG

APPCONFIG contains one record per application setup/configuration item that you wouldn’t typically allow the client to update/maintain. APPCONFIG is actually an alias (USE..ALIAS..) for a VFP free table that can optionally be Included in the VFP Project and built into the .EXE for added security.

The actual .DBF filename can be anything you want, but the framework USEs that table with an ALIAS of APPCONFIG. The actual .DBF filename is specified in a record in the APPINFO table. The fields created and populated in X3FWDATA.PRG are required, but you can add as many additional records as you need. The required records are described in X3FWDATA.PRG and in The Application Class/Object section of this document.

??USERS.DBF/USERS

After running X3FWDATA.PRG, the USERS table contains two records, one for a “default” user and one for an “external” user. During initial development, we log in as the default user, and in applications where the client does not want a login process, we “auto-login” as the default user but do it invisibly. We use the external user mainly in conjunction with rules, triggers, and stored procedures when logging activities by user and the tables are being accessed from the application (external to the application).

The actual .DBF filename can be anything you want, but the framework expects a long table name of USERS. The fields created and populated in X3FWDATA.PRG are required, but you can add as many additional fields as you need. The fields list is documented in X3FWDATA.PRG.

X3FWDATA.PRG also creates a .CDX with the tags we typically need; add/modify to suit your needs.

X3FWDATA.PRG also creates a local view V_USERS of the USERS table.

??USRPRF/USERPREFS

After running X3FWDATA.PRG, the USERPREFS table contains two records per user, one for the default _Screen.WindowState, and one for the DevTbrDockPosition. USERPREFS is intended to provide a place to store values and attributes on a per-user basis, used for saving/restoring things like form locations, toolbar DockPosition/locations, etc.

The actual .DBF filename can be anything you want, but the framework expects a long table name of USERPREFS. The fields created and populated in X3FWDATA.PRG are required, but you can add as many additional records as you need. The fields list is documented in X3FWDATA.PRG and is similar to that of APPINFO and APPCONFIG.

X3FWDATA.PRG also creates a .CDX with the tags we typically need; add/modify to suit your needs.

??GENPK.DBF/??GENPK

X3FWDATA.PRG creates an empty ??GENPK table. We use this table to hold the current Primary Key value for each table. ??GENPK is not technically required by Visual MaxFrame, but we use one in each system and have included it here. Visual MaxFrame Professional incorporates Primary Key generation features driven from X3GENPK, but even there, you can override with your own preferred behavior. In Visual MaxFrame, you may ignore X3GENPK and/or remove its references from X3FWDATA.PRG if you wish.

X3FWDATA.PRG also creates a .CDX with the required tags to use ??GENPK with our X3GENPK.PRG primary key generation library routine.

??REPCAT.DBF/REPORTCATALOG

X3FWDATA.PRG creates an empty REPORTCATALOG table. Visual MaxFrame reporting features are contained in Visual MaxFrame Professional, but REPORTCATALOG is designed to hold one record per “canned” report (.FRX) that the user can select from a standard report dialog.

Updates and Modifications

We include a list of updates and modifications since the last point-release in the header comments of X3FWMAIN.PRG. The listing describes the features, enhancements, and fixes in each version, and explains any retrofitting required to existing applications based on Visual MaxFrame.

Revision history going back further than the last point-release is contained in VMREVHST.DOC.

Optional/Recommended Files

X3FWDATA.PRG

Run X3FWDATA to create the default main database and tables. Copy it to another file and modify it to suit your needs.

X3FWMAIN.MNX, .MNT

You can MODI MENU X3FWMAIN and immediately save it to your application-specific main menu to have a default minimum menu that conforms to Visual MaxFrame defaults.

X3GENPK.PRG

Generates the next unique Primary Key for the passed table name, requires ??GENPK.DBF/GENERATEPK table created automatically in X3FWDATA.PRG.

X3WRPFRM.PRG

A wrapper program, X3WRPFRM.PRG lets you call a modal .VCX-based form and get a RETURN value like you would if it was an .SCX-based form called via DO FORM..TO <memvar>.

The Application Libraries Class/Object

X3FW.VCX/cusAppLibs is the class definition for the Visual MaxFrame application libraries object. It is the OOP equivalent of a SET PROCEDURE TO file of library routines. X3FWMAIN.PRG instantiates oLib, which is an instance of cusAppLibs, containing one member object per library class.

While we could have added all our procedural library routines to X3FWLIBS.VCX and instantiated them all as members of oLib, we prefer to call library routines as procedural code because it is easier and faster. The only time we see a distinct advantage to creating library “objects” is when the code might need to be subclassed to provide different versions. Other than that procedural library routines have these advantages:

as long as they are in the path, they are always available, not just when objects are instantiated. For example, this makes it easier to test forms standalone at the Command Window.

in general, they run faster than methods of objects.

they only consume memory while executing.

Requirements

X3FWLIBS.VCX must be in the path (and/or any library-object .VCXs you pass).

Features

Init() receives a character string of specified .VCX files whose (custom) classes are added to oLib as member library objects. The only custom classes that are loaded into oLib from the passed .VCXs are those classes that either don’t have an ilConcrete property or have ilConcrete=.F. (see X3FWLIBS.VCX/cusLibraries.zReadme)

Properties

The X3FW.VCX/cusAppLibs class definition does not contain any custom properties.

Methods

Protected properties are listed in bold text.

AddMembers() -- add the member library objects.

CreateName() -- creates the Name property for each added member library object. Subclass if you want a different naming convention than the one we use.

InstantiationErrorMessage() -- stores an "instantiation error" message used in X3FWMAIN.PRG

ProcessVCX() -- per passed .VCX, adds one member for each class definition whose .ilConcrete = .T.

The Application Class/Object

X3FW.VCX/ctrApp is the class definition for the Visual MaxFrame application object. X3FWMAIN.PRG instantiates oApp, which is an instance of ctrApp.

Since you cannot add member objects to classes from the VFP base class Custom in the Class Designer, we create oApp as a Container class (Visible=.F.) so that we can add member objects in the Class Designer. For example, ctrApp has a global application-level timer control member.

Requirements

The following programs must be in the VFP path:

X2WEXIST.PRG�X3CNVCHR.PRG�X2JSTFIL.PRG�X2SETLIB.PRG�X3SETCLS.PRG�X3WINMSG.PRG�X3GETVER.PRG

You must have two “system” information tables, one in the main application database and one as a free VFP table. Instead of making all these values properties of various application-level objects, we continue to use tables to store certain application information items where appropriate. We have identified the following categories of customizable/configurable items:

Those that are typically set once as application standards. We usually assign these as oApp/application object properties for which we have assigned defaults in X3FW.VCX/ctrApp (oApp). Subclass ctrApp to modify these to suit your needs.

Those that can be determined at the system level and might be maintained/set by the client. We usually store these in records of the APPINFO system information table (a table contained in the main applicaiton database) so that the system administrator can maintain them via an interface provided in the application.

Those that can be customized/configured by each user. We usually store these in user table fields.

Those that control system configuration/setup but should not be accessible to the client. The developer may need to modify these to test various application behaviors and features. We store these in records of the APPCONFIG free table so that they can be easily set by the developer during application development -- we do not allow developers to change properties of application-level classes. The APPCONFIG table can be included in the .PJX and built into the .EXE.

APPINFO

The application information table may have any .DBF filename, but must have a table name of “APPINFO”, be contained in the main application database, and have the following structure (automatically created in X3FWDATA.PRG):

App_Item C(20)

App_ItemDataType C(1)

App_ItemValue C(100)

App_ItemDescription C(254)

APPINFO must contain at least the following App_Item records (see X3FWDATA.PRG), but you can add as many records/items as you wish:

SetPathProd VFP path set in application setup (production)

AppTimerInterval Interval for the application timer

TimeoutSeconds Number of seconds before timeout

FreeConfigTable Filename of the APPCONFIG table

NOTE: App_Item values must be unique within APPINFO, and must also be unique with respect to APPCONFIG.Ap_Item values. Think of APPINFO and APPCONFIG as one table, split this way so that some configuration information (APPCONFIG) can be built into the .APP/.EXE.

APPCONFIG

The free application information table may have any .DBF filename, is opened in the application with the alias "APPCONFIG", and must have the following structure (automatically created in X3FWDATA.PRG):

Ap_Item C(20)

Ap_ItemDTp C(1)

Ap_ItemVal C(100)

Ap_ItemDsc C(254)

APPCONFIG must contain at least the following Ap_Item records (see X3FWDATA.PRG) , but you can add as many records/items as you wish:

DevModeExpr Expression indicating whether or not app is running in development

SetProcedure List of procedure files to SET PROCEDURE TO

SetClasslib List of class library files to SET CLASSLIB TO

SetLibrary List of API library files to SET LIBRARY TO

SetPathDev VFP path set in application setup (development)

Title Title string for use in messaging

IconFile .ICO file for the application

ScreenWallpaperFile .BMP file for use as _Screen wallpaper

UserLoginFormClass Optional way to set User Login form class/.VCX

DevToolbarClass Class name for any desired Developer’s Toolbar

DevToolbarPad Pad prompt of system menu popup to which to add Dev toolbar

LoginControl Type of auto-login control desired

AutoLoginUserID User ID to use for auto-login

AutoLoginPassword Password to use for auto-login

TimeoutType Timeout type "A"pp or "M"enu or "N"one

NoOnErrorDuringDev Use ON ERROR during development?

ErrorLogDirectory Directory (if not the default app directory) for ERRORLOG.DBF

DefaultReportClass [ClassName,.VCXFileName] of the default report object class

APPCONFIG is a free table with a filename of your choosing, which filename is stored as one of the records in APPINFO so that the oApp application object knows what table to open with the alias APPCONFIG. The APPCONFIG table can optionally be marked as Included in the VFP project and built into the .EXE for added security.

NOTE: Ap_Item values must be unique within APPCONFIG, and must also be unique with respect to APPINFO.App_Item values. Think of APPINFO and APPCONFIG as one table, split this way so that some configuration information (APPCONFIG) can be built into the .APP/.EXE.

Features

Here is a list of prominent features of ctrApp/oApp and the properties/methods/system table attributes that are used to implement them.

Auto-login during development

APPCONFIG.Ap_Item = "LoginControl"

APPCONFIG.Ap_Item = "AutoLoginUserID"

APPCONFIG.Ap_Item = "AutoLoginPassword"

(see also cusUser/oUser)

Installation of a Developer’s Toolbar

APPCONFIG.Ap_Item = "DevToolbarClass"

APPCONFIG.Ap_Item = "DevToolbarPad"

ioDevToolbar

DevToolbarInstall()

DevToolbarToggle()

Prevention of multiple instances on one workstation

SetupMultipleInstances()

Installation of a standard Edit menu (after the File menu)

ilInstallStandardEditMenu

(see also cusMenu/oMenu)

Installation of a Window menu with one bar per instantiated form

ilWindowPad

(see also cusMenu/oMenu and cusForms/oForms)

ON SHUTDOWN

ClearEvents()

OnShutDown()

ReadEvents()

SetupOnShutdown()

Application-level timer

inAppTimerInterval

SetAppTimerInterval()

ActionOnTimer()

oForms.AppTimerJustFired()

frmBase.OnAppTimerEvent()

member timer control tmrAppTimer

Timeout

icTimeoutType

inTimeoutSeconds

ilTimingOut

SetLastUserActivity()

SetTimeoutSeconds()

oForms.TimeoutAllForms()

frmBase.OnTimeoutReached()

controls have calls to oApp.SetLastUserActivity to report user activity

TABLEUPDATE() characteristics

ilForceTableUpdate

data-entry forms have their own ilForceTableUpdate which overrides the one at the applicaiton level

Setup external tools/3rd party products

SetupExternalTools()

CleanupExternalTools()

Global error handling

InstallGlobalErrorHandler()

Instantiate global toolbars

Global toolbars stored to the oApp.iaGlobalToolbars array are instantiated automatically by oApp.SetupGlobalToolbars() and remain available for the life of the application.

SetupGlobalToolbars()

SetupCustom()

iaGlobalToobars

(see also oToolbars and oForms)

Properties

Protected properties are listed in bold text.

Application setup properties set in the class definition

The following properties are set in the ctrApp class definition. If you want different attributes, subclass your application-specific application class definition and set the following to your needs:

iaGlobalToolbars -- array of global toolbar defintions to be instantiated in application setup -- set this array in your subclass, to indicated global toolbars you want installed for the life of the app

icScreenFontName -- _Screen.FontName, set to FoxFont.

icTimeoutType -- type of timeout to be used for the application, set to "N"one.

ilForceTableUpdate -- logical flag used as the 2nd lForce parameter for TABLEUPDATE()s, defaults to .T. and may be overridden at the form level via the frmData.ilForceTableUpdate property

ilInstallStandardEditMenu -- logical flag indicating whether to add a standard Edit menu to the system menu, set to .T.

ilScreenFontBold -- _Screen.FontBold, set to .F.

ilScreenFontItalic -- _Screen.FontItalic, set to .F.

ilWindowPad -- logical flag indicating whether to add instantiated forms to a Window menu pad, set to .T.

inScreenBackColor -- _Screen.BackColor, set to rgb(255,255,255).

inScreenFontSize -- _Screen.FontSize, set to 9.

inScreenWindowState -- _Screen.WindowState, set to 0/zero.

inVFPVersion -- 3 or 5, to indicate the VFP version under which the app is running.

Application setup properties set in the class definition from APPINFO values

The following properties are set in the ctrApp class definition, based on field values in the APPINFO system data table. If you want different attributes, make the changes in your APPINFO system table.

icMainDatabase -- name of the main database for the application, passed into THIS.Init() as a parameter or explicitly set in a subclass.

ioDevToolbar -- object reference to the Developer’s Toolbar, if any.

inAppTimerInterval -- interval for the application timer, if any.

inTimeoutSeconds -- number of seconds before timeout, if any.

Application setup properties set in the class definition from APPCONFIG values

The following properties are set in the ctrApp class definition, based on field values in the APPCONFIG system data free table. If you want different attributes, make the changes in your APPCONFIG table.

ilDevelopmentMode -- indicates whether the app is running in development mode, set according to APPCONFIG.Ap_Item = "DevModeExpr".

icAppTitle -- title of the application, used in the _Screen.Caption and user messages. Set to APPCONFIG.Ap_Item = "Title".

Properties for internal use

The following properties are used internally in ctrApp and its subclasses. They are not intended for other manipulation:

icApplicationPrefix -- 2-character application prefix (optional, MaxTech, Inc. convention), set in Init() according to the passed parameter.

ilTerminateAfterInit -- flag that defaults to .F. but can be set to .T. during application setup and can be queried after CREATEOBJECT() and indicated that while the oApp object was successfully instantiated, the application should be terminated.

ilTimingOut -- flag indicating whether or not the application is in the process of timing out.

itLastUserActivity -- stores the DATETIME() of the last user activity; used in conjunction with timeout features.

iaSaveReset -- array of items that are set in application setup and reset on application termination.

iaVFPToolBars -- array of references to the VFP toolbars that are in use on application startup, saved for reset on termination.

Methods

Protected methods are listed in bold text, custom methods listed after VFP methods:

Destroy() -- application cleanup.

Init() -- application setup, including calls for all the THIS.Setup..() methods.

ActionOnTimer() -- code to execute when the application timer fires and any timeout condition has not been reached.

AfterInstallApp() -- code to execute after oApp is instantiated, called by X3FWMAIN.

AfterInstallFormsMgr() -- code to execute after oForms is instantiated, called by X3FWMAIN.

AfterInstallMenuMgr() -- code to execute after oMenu is instantiated, called by X3FWMAIN.

AfterInstallToolbarsMgr() -- code to execute after oToolbars is instantiated, called by X3FWMAIN.

AfterInstallUser() -- code to execute after oUser is instantiated, called by X3FWMAIN.

BeforeInstallFormsMgr() -- code to execute before oForms is instantiated, called by X3FWMAIN.

BeforeInstallMenuMgr() -- code to execute before oMenu is instantiated, called by X3FWMAIN.

BeforeInstallToolbarsMgr() -- code to execute before oToolbars is instantiated, called by X3FWMAIN.

BeforeInstallUser() -- code to execute before oUser is instantiated, called by X3FWMAIN.

BeforeReadEvents() -- code to execute as final setup code, just before READ EVENTS, called by X3FWMAIN.

CleanupExternalTools() -- do cleanup to complement setup done in SetupExternalTools().

ClearEvents() -- issue CLEAR EVENTS if application-termination criteria is met.

DevToolbarInstall() -- install any specified Developer’s Toolbar.

DevToolbarToggle() -- toggles the Developer’s Toolbar visible/invisible.

ForceShutdown() -- force a complete application shutdown.

GetAppInfo() -- returns the value from APPINFO or APPCONFIG for the passed item.

InDevelopment() -- returns a logical value indicating the value of THIS.ilDevelopmentMode.

InProduction() -- returns a logical value indicating the value of !THIS.ilDevelopmentMode.

InstallBitmapWallpaper() -- display any .BMP file specified in APPCONFIG.Ap_Item = "ScreenWallpaperFile".

InstallGlobalErrorHandler() -- install a global ON ERROR routine (defaults to X3ERROR)

InstantiationErrorMessage() -- stores an "instantiation error" message used in X3FWMAIN.PRG

NoOnError() -- un-install the ON ERROR routine installed in InstallGlobalErrorHandler(), only while in development mode, and based on the “NoOnErrorDuringDev” record in xxCONFIG.DBF

OnShutdown() -- method called by ON SHUTDOWN.

OnTimer() -- executes every time the application timer fires a legitimate timer event.

ReadEvents() -- call THIS.SetupOnShutdown() and issue READ EVENTS.

ReindexTables() -- reindex all tables in the application.

RunTime() -- returns a logical value indicating whether or not the app is being run under as a runtime distributable or from the Command Window.

SaveReset() -- save settings on entering the app, reset them on termination.

SaveResetVFPToolbars() -- save VFP toolbars’ status on entering the app, reset them on termination.

SetAllSelectedBackColor() -- issue THIS.SetAll("SelectedBackColor") and THIS.SetAll("SelectedItemBackColor")

SetAppInfo() -- create/update a records in APPINFO.

SetAppTimerInterval() -- set THIS.inAppTimerInterval, controlling the interval of the application timer.

SetClasslib() -- SET CLASSLIB TO the indicated APPCONFIG value.

SetLastUserActivity() -- update THIS.itLastUserActivity, which tracks the last user activity for use in timeout behaviors.

SetLibrary() -- SET LIBRARY TO the indicated APPCONFIG value.

SetPath() -- SET PATH TO the indicated APPCONFIG/APPINFO value.

SetProcedure() -- SET PROCEDURE TO the indicated APPCONFIG value.

SetTimeoutSeconds() -- set THIS.inTimeoutSeconds, the number of seconds before any specified timeout behavior is executed.

SetTimeoutType() -- set THIS.icTimeoutType, the type of timeout to be effected after THIS.inTimeoutSeconds of user inactivity:

"N"one (default)

from the entire "A"pplication

from all open forms, leave the user at the "M"enu (i.e. release all record locks when using pessimistic buffering)

SetupAppInfoTable() -- open APPINFO and APPCONFIG tables.

SetupAppTimer() -- initialize THIS.inAppTimerInterval.

SetupCustom() -- empty method called from THIS.Init() after all the other Setup..() methods, to allow for easy subclassing of additional setup code.

SetupExternalTools() -- instantiate external object libraries, 3rd party tools, etc.

SetupGlobalToolbars() -- instantiate global toolbars specified in THIS.iaGlobalToolbars array.

SetupKeyboard() -- do keyboard setup.

SetupMainDatabase() -- set THIS.icMainDatabase and THIS.icApplicationPrefix.

SetupMultipleInstances() -- don’t allow multiple instances of this app on the current workstation.

SetupOnShutdown() -- install the ON SHUTDOWN.

SetupScreen() -- do _Screen setup.

SetupSets() -- execute application-default SET commands.

SetupTables() -- open the passed database/default database and its tables.

SetupTimeout() -- initialize properties used to determine any desired timeout behaviors.

ShellFinalSetup() -- shell method to allow easy instance/lowest subclass final setup code after all application objects have been instantiated and before READ EVENTS, called by THIS.BeforeReadEvents().

The User Class/Object

X3FW.VCX/cusUser is the class definition for the Visual MaxFrame global application-level user object. X3FWMAIN.PRG instantiates oUser, which is an instance of cusUser. You can subclass cusUser and have X3FWMAIN.PRG instantiate your application-specific oUser.

Requirements

oApp must exist.

Your application must have a USERS table (see X3FWDATA.PRG) that:

is contained in a database

contains a LanID field

contains a Password field

contains a Primary Key field

has a tag on LanID+Password.

Your application APPCONFIG table (see X3FWDATA.PRG) must have the following Ap_Item records:

"LoginControl"	

"AutoLoginUserID"

"AutoLoginPassword"

Features

Here is a list of prominent features of cusUser/oUser and the properties/methods/system table attributes that are used to implement them.

Login/Auto-Login

During development, unless user-login-specific features are being tested, manual login is a waste of time. Visual MaxFrame provides for three types of login, set in APPCONFIG.Ap_Item = "LoginControl":

"AUTO" -- When running in development, auto-login to the system.

"NONE" -- Log in a default user, but do it invisibly so that it appears to not have taken place. We use this behavior for systems where the client does not want a login procedure, but we log in a default user anyway and provide complete user services to the application.

"NORMAL" -- Force the user to login with UserID and Password.

User-Customizable settings

On entering the app:

restore the _Screen.WindowState from the last session

during development, restore the DockPosition of any Developer’s Toolbar from the last session

On leaving the app:

save the _Screen.WindowState to the USERS table

during development, save the DockPosition of any Developer’s Toolbar

User Security

The initial phase of user security, the login process, is handled in this class as noted above.

Default application-wide user security is provided through the USERS table, which contains a Usr_Rights field that may contain any one of 3 values:

"S" -- Supervisor rights. Full access to all application features.

"G" -- Global read/write rights. Basic read/write access to application features. Users with global rights typically have access to all operational data and functions, but not access to supervisor activities like re-indexing data, system setup, setting user rights, etc.

"R" -- Read-only rights. Users who login with this access are typically permitted to view data but are not allowed to make any updates, add information, or delete data.

At the form/control level, here’s what’s built into Visual MaxFrame, driven by the above value:

Form.Load() sets a custom protected ilReadOnly property if oUser.GetUserInfo("Usr_Rights")="R"

As each control is instantiated FormControls.Init() calls FormControls.SetUserSecurity(), setting Enabled/ReadOnly properties according to THISFORM.GetPProp("ilReadOnly") and the FormControl.BaseClass. Note that not all controls in X3FW.VCX have a SetUserSecurity() method; only those that can receive focus or be edited by the user.

Form.Init() calls Form.SetUserSecurity() for an opportunity to make further adjustments just before the form is activated.

The bottom line is that all controls (except commandbuttons, see the next paragraph) are either disabled or made read-only if the current user has read-only access to the application.

NOTE: Commandbuttons have no established SetUserSecurity() behavior in X3FW.VCX/cmdBase. There is no default behavior that can be established at this high level of abstraction. CommandButtons need subclass/instance-specific logic to set their Enabled = .F. under the right circumstances. If you have Visual MaxFrame Professional, you’ll find such code in the SetUserSecurity() and Refresh() methods of many of the commandbutton subclasses.

NOTE: This version of Visual MaxFrame currently has no support for security for toolbars, other than the fact that X3FW.VCX/tbrBase has an empty SetUserSecurity() method which is called from THIS.Init(). Mostly commandbuttons are used on toolbars, and pretty much any control on a toolbar will need its own overriding code.

At the application level, oMenu.AfterInstallInitialMenu() contains code to remove the System Setup and Re-Index options from the Tools menu if oUser.GetUserInfo("Usr_Rights")#"S".

You can make use of USERS.Usr_Rights/ oUser.GetUserInfo("Usr_Rights") for anything that meets your needs. To extend user-security/rights to a more granular level, we recommend employing a USERRIGHTS table that contains whatever additional security attributes you need, even down to the form/control level on a per-user basis. Then augment/override the default behavior code in SetUserSecurity() methods or use the hook design pattern to hook in your own control/form-specific needs (each object in Visual MaxFrame inherits and ioHook object and a SetHook() method).

User Preferences

Two methods allow saving/restoring user preferences and other user-specific values to/from the USERPREFS table. For performance reasons, both methods provide an option for getting/setting multiple values in one call by passing an array of values.

GetUserPreference()

SetUserPreference()

Properties

Protected properties are listed in bold text.

User properties set in the class definition

icUsersTableDatabase -- name of the database containing the USERS table, defaults to oApp.icMainDatabase.

icUsersTableName -- name of the table in THIS.icUsersTableDatabase that contains USERS data, defaults to USERS.

icUserPKFieldName -- name of the field in the USERS table that contains the Primary Key, defaults to Usr_PK.

icUserPasswordFieldName -- name of the field in the USERS table that contains the Password, defaults to Usr_Password.

icUserLanIDFieldName -- name of the field in the USERS table that contains the Lan ID, defaults to Usr_LanID.

icUserIDPlusPasswordTag -- index tag in the USERS table that yields UserID+Password, defaults to Usr_IDPass.

Properties set in the class definition from APPCONFIG values

icUserLoginFormClassDefinition -- name of the class to use for the user login form. Optionally add a comma delimiter followed by the name of the containing .VCX if necessary to SET CLASSLIB TO. Defaults to "frmLogin" (contained in X3FW.VCX) and may be set by subclassing and setting it directly, or avoiding subclassing by setting it in APPCONFIG.Ap_Item = "UserLoginFormClass".

Properties for internal use

icUsr_PK -- Primary Key expression of the user who logs in.

Methods

Protected methods are listed in bold text, custom methods listed after VFP methods:

Destroy() -- call THIS.SaveCustomizableAttributesOnDestroy().

Init() -- store properties and log the user in.

AfterUserLogin() -- called by THIS.Init() after a successful UserLogin(), a place to add subclass code.

AutoLogin() -- if indicated by APPCONFIG.Ap_Item = "LoginControl", log in a user during development.

BeforeUserLogin() -- called by THIS.Init() just before UserLogin(), a place to add subclass code.

GetUserInfo() -- returns the value from the passed name of a field in the USERS table.

GetUserPreference() -- retrieves one or more values from the USERPREFS table

InstantiationErrorMessage() -- stores an "instantiation error" message used in X3FWMAIN.PRG

KeyboardStuffString() -- creates a string to stuff to the keyboard during auto-login.

LocateUserPK() -- sets the record pointer in the USERS table to the record corresponding to THIS.icUsr_PK.

SetUserPreference() -- saves one or more values to the USERPREFS table

SaveCustomizableAttributesOnDestroy() -- as the user leaves the app, save any user-customizable attributes to the USERS table.

SetUserInfo() -- stores a passed value to the passed field name in the USERS table.

UserLogin() -- log the user into the system.

The Forms Manager Class/Object

X3FW.VCX/cusForms is the class defintion for the Visual MaxFrame global application-level forms manager object. X3FWMAIN.PRG instantiates oForms, which is an instance of cusForms. You can subclass cusForms and have X3FWMAIN.PRG instantiate your application-specific oForms.

Requirements

X2JSTFIL.PRG and X2SETLIB.PRG must be in the VFP path.

oApp must exist.

oMenu must exist if you want to use the default behavior of adding forms to the Window menu on instantiation.

Features

Here is a list of prominent features of cusForms/oForms and the properties/methods/system table attributes that are used to implement them.

Add/delete bars from the Window menu, corresponding to instantiated forms

oApp.ilWindowPad

(see also cusMenu/oMenu)

Manually trigger the Valid event for the current form control

ActiveControlValid()

Populate Form.Icon with any specified application icon if Form.Icon is blank

DoForm()

Instantiate forms and maintain object references to them

Init()

iaFormInstances

DoForm()

DeleteInstance()

Alert all open forms of the possible need to refresh themselves

RefreshFormsOnUpdate()

frmData.RemoteRefresh()

Act on messages from oApp to broadcast messages to all open forms

AppTimerJustFired()

TimeoutAllForms()

Properties

Protected properties are listed in bold text.

icPDSSetsClassName -- name of the class (and optionally, .VCX file containing it) to instantiate in prviate data session forms to execute the SET commands scoped to private data sessions. Defaults to “cusPrivateDataSessionSETs,X3FW.VCX”.

inInstanceID -- counter ID assigned to each instantiated form.

inLastActiveFormID -- ID of the last-active-form of those currently running

inQueryUnloadBehavior -- specify the default Form.QueryUnload() behavior. This property is used in X3FWFRM.VCX/frmDataEntry form class in Visual MaxFrame Professional.

iaFormInstances -- array of references to all instantiated non-modal forms, also contains other information about the forms.

Methods

Protected methods are listed in bold text, custom methods listed after VFP methods:

Init() -- create THIS.iaInstances, other setup.

ActivateSpecificForm() -- set focus to a passed form object reference or the form whose reference is stored in the passed THIS.iaInstances row.

ActiveControlValid() -- manually triggers _Screen.ActiveForm.ActiveControl.Valid() and returns a logical value indicating success.

AppTimerJustFired() -- broadcasts a message to all open forms that the application timer has just fired.

AnyFormsInstantiated() -- returns a logical value indicating whether there are any extant instantiated forms.

DeleteInstance() -- as a form is released, delete its information from THIS.iaFormInstances.

DoForm() -- instantiate an .SCX-based form or .VCX-based form.

ExecuteActiveControlMethod() -- execute the passed method name of the current active control.

HowManyInstantiated() -- returns the number of times the passed form is currently instantiated.

InstantiationErrorMessage() -- stores an "instantiation error" message used in X3FWMAIN.PRG

RealActiveControl() -- returns an object reference to the “real” _Screen.ActiveForm.ActiveControl (when in a grid, ActiveControl contains a reference to the grid, not to the control in the grid column).

RefreshFormsOnUpdate() -- broadcast a message to all open forms to executed their RemoteRefresh() method. Executed on receiving a message from a form that data has been updated that might need refreshing on other open forms.

RegisterStandaloneForm() -- when running standalone forms at the Command Window, simulate the addition of the form to THIS.iaInstances so that standard oForms services are available.

ReleaseAllForms() -- attempts to release all open forms and returns the number of forms that can’t because they are in Edit/Add mode.

TimeoutAllForms() -- broadcast a message to all open forms to execute their OnTimeoutReached() method.

The Toolbar Manager Class/Object

X3FW.VCX/cusToolbars is the class definition for the Visual MaxFrame global application-level toolbar manager object. You can subclass cusToolbars to your own toolbars manager.

Object references to all toolbars are maintained in a protected array property iaTbrInstances, similar to the way forms are managed by oForms.

Requirements

oApp and oForms must exist.

Features

Global toolbars

Global toolbars are toolbars that are instantiated on application startup and remain visible/available for the life of the app. Visual MaxFrame supports as many “global” toolbars as you care to instantiate.

iaTbrInstances[] -- column3 contains “G” for global toolbars

oApp.SetupGlobalToolbars()

oApp.BeforeReadEvents()

Linked toolbars

Linked toolbars are only visible/available while focus is in the form to which they are linked. Visual MaxFrame supports as many “linked” toolbars as you care to instantiate, but only one can be linked to any one form, and only the one linked to the current form (if any) is visible. oToolbars handles the instantiation of linked toolbars and the Show()ing/Hide()ing of them as focus moves from form to form, in collaboration with oForms and form methods common to all forms (inherited from X3FW.VCX/frmBase). oToolbars stores an object reference to the linked toolbar to the form.ioLinkedToolbar property.

iaTbrInstances[] -- column3 contains “L” for linked toolbars

frmBase.SetupLinkedToolbar()

Instantiate toolbars

All toolbars are instantiated by oToolbars methods. Linked toolbars are only destroyed when no extant forms are linked to them, so sometimes what appears to be the instantiation of a linked toolbar is merely the Show()ing of one instantiated previously. When no forms remain that are linked to a particular linked toolbar, the linked toolbar is released. When oToolbars instantiates a toolbar linked to a form, it stores an object reference to the toolbar in the form.ioLinkedToolbar custom property.

DoToolbar()

FormActivate()

LinkedFormActivate()

NonLinkedFormActivate()

frmBase.icLinkedToolbar

frmBase.SetupLinkedToolbar()

frmBase.ioLinkedToolbar

Associated menus

Since toolbar selections should always have equivalent menu selections for the mouseless or rodentially-impaired, linked toolbar classes inherit menu-management methods from X3FW.VCX/tbrBase. Show()ing/Hide()ing any menu associated with a linked toolbar is handled in the toolbar’s .Show() and .Hide() methods, not the oToolbars manager.

(see X3FW.VCX/tbrBase.LinkedMenu)

Properties

Protected properties are listed in bold text.

iaTbrInstances -- array of object references to extant toolbars, plus columns of other information.

Methods

Protected methods are listed in bold text, custom methods listed after VFP methods:

Init() -- initializes the iaTbrInstances array property

AnyInstantiated() -- returns a logical value indicating whether any toolbars of the passed type are currently instantiated

CleanupOnAppTerminate() -- cleanup activities when the app terminates

DeleteInstance() -- releases the passed toolbar from the iaTbrInstances array and from memory.

DoToolbar() -- instantiates the passed toolbar class definition.

FormActivate() -- all Visual MaxFrame forms call this method from their SetupLinkedToolbar() method

GetClassName() -- returns just the ClassName from a string that can potentially include a comma-delimited .VCX filename

GlobalToolbarsOnFormActivate() -- called from form.Activate(), fires the OnFormActivate() method of all extant global toolbars

HideShowAll() -- Hide()s or Show()s all existing toolbars of the passed type

InstantiationErrorMessage() -- stores an "instantiation error" message used in X3FWMAIN.PRG

LinkedFormActivate() -- takes the appropriate action when a form with a specified linked toolbar is Activate()d

LinkedFormDestroy() -- when oForms deletes a form from its array and that form has a linked toolbar, it messages oToolbars.LinkedFormDestroy() so that oToolbars can Hide() the linked toolbar if there are other extant forms linked to that toolbar, or destroy/release that toolbar if there are no other extant forms linked to that toolbar.

NonLinkedFormActivate() -- takes the appropriate action when a form with no specified linked toolbar is Activate()d

ReleaseGlobalToolbars() -- releases all existing global toolbars

ResetArray() -- reset the iaTbrInstances array when there are no remaining toolbars to track.

The Menu Class/Object

X3FW.VCX/cusMenu is the class definition for the Visual MaxFrame global application-level menu manager object. X3FWMAIN.PRG instantiates oMenu, which is an instance of cusMenu. You can subclass cusMenu and have X3FWMAIN.PRG instantiate your application-specific oMenu.

oMenu does not provide menu items as individual objects the way some other frameworks do. Visual MaxFrame works fine with system menus created using the Menu Designer, as you did in 2.x. Our oMenu object serves to instantiate your initial menu .MPR, and thereafter provides menu services.

Requirements

oApp and oForms must exist.

Features

Here is a list of prominent features of cusMenu/oMenu and the properties/methods/system table attributes that are used to implement them.

Install the initial system menu

Init()

Install/remove/update Window menu items as requested by oForms

AddWindowMenuItem()

RemoveWindowMenuItem()

UpdateWindowMenuItem()

(see also oForms)

Check current control’s Valid before executing the requested .PRG/form

DoForm()

DoPrg()

(see also oForms)

Properties

Protected properties are listed in bold text.

ilWindowPad -- logical flag set in THIS.Init() to correspond to oApp.ilWindowPad to eliminate constant calls to oApp.GetPProp(“ilWindowPad”).

icInitialMPR -- name of the .MPR filename to use for the initial system menu, defaults to any two-character application prefix plus “MAIN.MPR”.

Methods

Protected methods are listed in bold text, custom methods listed after VFP methods:

Init() -- set features and install the initial system menu .MPR file.

AddWindowMenuItem() -- if THIS.ilWindowPad, adds the passed item to the Window menu.

AfterInstallInitialMenu() -- place to put code to execute after the initial .MPR menu has been successfully installed.

AfterInstallMenu() -- place to put code to execute at the end of THIS.InstallMenu, after everything else.

BeforeInstallInitialMenu() -- executes code before the system menu is installed.

BeforeInstallMenu() -- place to put code to execute at the beginning of THIS.InstallMenu, before anything else.

DefineBar() -- executes a DEFINE BAR command based on the passed parameters.

DefinePad() -- executes a DEFINE PAD command according to passed parameters.

DefinePopup() -- executes a DEFINE POPUP command.

DoesBarNumberExist() -- returns a logical indicating whether the passed bar number exists (under construction).

DoesBarPromptExist() -- returns a logical value indicating whether a passed bar prompt exists.

DoesPadNameExist() -- returns a logical value indicating whether the passed menu pad name exists on the passed menu.

DoesPadPromptExist() -- returns a logical value indicating whether a menu pad exists with the passed prompt text on the passed menu.

DoesPopupExist() -- returns a logical indicating whether the passed popup name exists (under construction).

DoForm() -- calls the corresponding oForms.DoForm() if oForms reports that the current form’s current control contains valid data.

DoPRG() -- execute a .PRG from the menu if the current form’s current control is valid.

GetPadName() -- returns the pad name for the passed pad prompt.

InstallInitialMenu() -- installs the initial system menu.

InstallMenu() -- installs the passed .MPR menu.

InstallStandardEditMenuPad() -- installs a standard “Edit” menu pad if oApp.GetPProp(“ilInstallStandardEditMenu”) = .t.

InstantiationErrorMessage() -- stores an "instantiation error" message used in X3FWMAIN.PRG

OnSelectionBar() -- execute an ON SELECTION BAR command based on the passed parameters.

ParsePopupNameFromPrompt() -- returns a maximum 10-character popup name from a passed string.

ReleaseBar() -- executes a RELEASE BAR command based on the passed parameters.

ReleasePad() -- executes a RELEASE PAD command based on the passed parameters.

ReleasePopups() -- execute a RELEASE POPUPS command based on the passed parameters.

ReleaseWindowMenu() -- releases the Window menu.

ReleaseWindowMenuItem() -- releases a bar of the Window menu.

RequestClearEvents() -- request CLEAR EVENTS, based on whether or not the current form’s current control contains valid data. This is the message to put in your “Exit” menu option.

UpdateWindowMenuItem() -- updates the prompt text on a particular Window menu bar.

First-Level Subclasses of Base Classes

In addition to the class definitions for the global application-level objects described above, X3FW.VCX includes what we call our first-level subclasses of the VFP base classes. These are the top-level classes in our hierarchies for each VFP base class.

First-level subclasses provide a place to put features and behaviors that are inherited by all objects in the entire hierarchy for that base class. Such behaviors become the defaults for your particular hierarchy, as you subsequently never use controls directly from the VFP Form Controls Toolbar, but one of your subclasses instead.

First-level subclasses are very generic, as the properties and methods you assign are ones you figure should apply 90+% of the time for that base class. Some of the classes in X3FW.VCX have no specified properties or methods, but we use this high level of abstraction to have a consistent set of top-level subclasses and to have a place to put features we come across in the future that should permeate the entire hierarchy.

Most of the VFP base classes are represented in X3FW.VCX by a single first-level subclass to start the hierarchy, but a few base classes have a first-level subclass plus one or more subclasses.

As is the case with most of Visual MaxFrame, there are items we intend to add and/or modify in the future. We don’t consider either the framework nor X3FW.VCX to be complete (and we don’t know if it ever will be, given the way we continually get new ideas for enhancements). Future revisions won’t be limited to bug fixes.

Common Custom Properties/Methods

For standardization, we have added custom properties and methods to various groups of subclasses.

All First-Level Subclasses

During the process of designing class heirarchies, we found it helpful to add custom methods to each of our first-level subclasses and hence be available in all subclasses/instances as a standard:

GetPProp()

GetPProp() makes all protected properties “read-only” and their values globally available without exposing them to modification. GetPProp() returns the value of the passed property name. While it returns the value of any property, exposed properties can be queried directly instead of via GetPProp().

iaVelcro

Similar to ioHook in some ways, iaVelcro is a custom array property, intended for storing object references to objects (usually instances of objects of the base class Custom) that provide extended behaviors without subclassing. Object references stored to the iaVelcro array are “attached” to the owning object, and are not chained together the way hooks are. iaVelcro is currently not used for any Visual MaxFrame features, but is put to work in Visual MaxFrame Professional (for an example, see X3FWMISC.VCX/cusSelCriteria and VMDECUSa.SCX).

ilVM

There is a bug in the PEMSTATUS() function in both VFP 3.0b and VFP 5.0 that can result in an internal unreleased object reference to the object passed in as the first parameter. It manifests itself as

a form that doesn’t close

a form that appears to close but is kept cached in memory

a private data session form that appears to close but is kept cached in memory and whose private data session is left open (and can be checked in the View Window)

While we have not removed all uses of the PEMSTATUS() function from the Visual MaxFrame framework, we have replaced some of them with queries of the TYPE() function instead:

IF pemstatus(SomeObject,"SomeProperty",5)

can be replaced by

IF type("SomeObject.SomeProperty") # "U"

as long as SomeProperty is exposed/public (not protected/hidden).

The .ilVM property has been added to all X3FW.VCX/xxxBase “base” classes to help in eliminating other PEMSTATUS() calls, the ones for which the call is made to ensure that a feature is available because the object in question inherits from the Visual MaxFrame framework:

IF pemstatus(THISFORM,"GetPProp",5)

can be replaced by

IF type("THISFORM.ilVM") # "U"

because all Visual MaxFrame objects inherit a GetPProp() method.

ioHook

The ioHook property is set by the SetHook() method, storing an object reference to the ioHook property. Hooks can call hooks, and run-time behaviors can be added and chained together without subclassing.

Release()

For any VFP base classes that don’t have a native Release() method, we’ve added one so that any object can be released with the same message syntax: MyObject.Release().

SetExprProps()

A place to set expression-based properties, particularly for use with classes (Class Designer), not instances (Form Designer). In the Properties Sheet, VFP doesn’t set properties based on expressions reliably, so this method is a place to put such settings, like InputMask, properties set based on DBGETPROP() values, etc. Called from each first-level subclass’ Init(), before the call to THIS.ShellAdditionalInit() (see below).

SetHook()

Sets the ioHook property, allowing the easy creation of objects in the “hook design pattern”. Hooks can be chained together to effect run-time behaviors without subclassing.

ShellAdditionalInit()

The process of adding specificity as subclasses can become cumbersome. We have found in particular that we frequently want to add just a line or two of code to the Init() of a subclass. It is easy enough to call back to the Class/ParentClass using the scope resolution operator, but when parameters are involved and/or the object in question is a member of a container, things get rather complicated. So we added ShellAdditionalInit() to all classes and call THIS.ShellAdditionalInit() at the end of the first-level subclass’ Init().

Storage()

Storage is a dummy method that provides a place to put code that you need to store until you can debug it, use it, swap it for some existing code, etc. The Storage() method is never called anywhere, it’s just there to do what its name implies -- store unused code for any reason.

zReadMe()

zReadMe is where we put documentation for class definitions, named starting with a “z” to make it easy to find at the end of the Properties Sheet. zReadMe consists of descriptive text between an TEXT..ENDTEXT construct that prevents generation of a VFP compile error when it is saved.

Where there is a discrepancy between this documentation and a particular zReadMe, the zReadMe contains the more up-to-date information. We constantly update zReadMe text as we make modifications, but formal documentation can be a step or two behind. Since most Visual MaxFrame class definitions are for abstract classes, there is not much contained in the zReadMe methods. However, in Visual MaxFrame Professional, the zReadMe text is the prime source of information on how to understand/implement a particular class.

Since zReadMe() is just another method, you can use tools like Ken Levy’s SuperCls tool to view the zReadMe() text in the first ancestor that has such text.

First-Level Subclasses of Controls That Can Respond to User Activity

In VFP, not just data-entry controls can respond to user actions. For example, shapes and images respond to various mouse events.

Report user activity to oApp

Class definitions for controls that can respond to user activity contain the following code in various methods:

IF type("oApp.BaseClass") = "C"

 oApp.SetLastUserActivity()

ENDIF

This call to oApp reports user activity, and is used in conjunction with the application-wide timeout feature. You’ll find the above code in the GotFocus() and InteractiveChange() of all classes that have those methods, plus a few other methods where appropriate per base class.

First-Level Subclasses of Controls That Have a Value Property

Many VFP base classes have a Value property primarily used to hold/display a value during data-entry that can be bound to a ControlSource. Controls for binding data share common behaviors, and we have added according to our development needs.

iuValueOnGotFocus

Since the days of FoxPro 1.02 we have always found it useful to save the value of a control on entering it for use in validation, etc. later. In the GotFocus() method, we store the Value to THIS.iuValueOnGotFocus, where we can compare it with the Value during Valid() or LostFocus().

Given the nature of what can be stored in EditBoxes, we don’t use this technique for X3FW.VCX/edtBase and its subclasses.

First-Level Subclasses of Controls That Can Be Bound to Data

Bound controls have certain needs in common.

ilAcceptNull-GotFocus()-LostFocus()

VFP supports the entry of the .NULL. value in table fields and data-entry controls. However, keyboarding {CTRL+0} to enter .NULL. in a data-entry control generates a VFP error if the control is bound to a non-nullable column. So controls in Visual MaxFrame that can be bound to data have a custom ilAcceptNull property that determines whether {CTRL+0} is active/hot while focus is in that control. ilAcceptNull is set in GotFocus() and reset in LostFocus().

First-Level Subclasses of Controls That Accept Text Data-Entry

Some controls (textbox, editbox, spinner, etc.) can accept text data-entry via the keyboard, while other controls (commandbuttons, listboxes, etc.) can’t. The ones that can accept text entry have special needs that can be programmed once at the highest level of the hierarchy.

In particular, these controls do not fire their Valid() when focus leaves them via a menu selection or ON KEY LABEL. This is a serious deficiency that can easily result in invalid data being left in these controls. Visual MaxFrame solves this problem by the interaction between the following properties and methods and oForms.ActiveControlValid(), and oMenu.DoForm()/DoPRG().

ilValidFlag

A logical flag initialized in GotFocus() and set during Valid()/LostFocus(), used to determine at any point whether the current .Value is valid.

Valid()-CustomValid()

We have added standard behaviors to Valid(), in particular a check for whether or not the user has just mouse-selected a commandbutton whose Cancel=.T., in which case we suppress the Valid so that the Cancel behavior can execute without forcing a valid entry. Instead of putting your validation code in the Valid(), leave it untouched and put subclass/instance-specific validation code in CustomValid(), which is called by Valid() after high-level checks are complete.

cboBase

The first-level combo class in Visual MaxFrame, cboBase abstracts the following noteworthy features:

Alias-based features

When you set RowSourceType = 2-Alias in the Properties Sheet for any combo instance/subclass, THIS.Requery() is called in the Init().

Also, cboBase.UniqueAlias() returns a unique alias name, useful in situations where you need more than one instance of the same class in the same form.

SQL-Select-based features

Destroy() includes code to USE IN the cursor used to populate the RowSource if RowSourceType=3, SQL cursor.

Array-based features

cboBase has a custom iaList[] array property for use when RowSourceType = 5-Array

When you set RowSourceType = 5-Array in the Properties Sheet for any combo instance/subclass, you get the following “automatic” behaviors in the Init():

THIS.RowSource is set to "THIS.iaList"

THIS.Requery() is called, which is where you put code to (re-)populate the list

CommonPEMs

All First-Level Subclasses

First-Level Subclasses of Controls That Can Respond to User Activity

First-Level Subclasses of Controls That Have a Value Property

cboBaseCombo

CommonPEMs

First-Level Subclasses of Controls That Can Be Bound to Data

First-Level Subclasses of Controls That Accept Text Data-Entry

cboBaseDropDown

CommonPEMs

none

chkBase

The top-level checkbox class in Visual MaxFrame, chkBase abstracts the following noteworthy features:

Prevent a Delete keypress from selecting a \<A hotkey commandbutton

In checkboxes and optionbuttons, pressing the Delete key selects any commandbutton that has a \<A hotkey (a <Save> button, for example). chkBase contains KeyPress code to “eat” Delete keystrokes.

Prevent moving to another control if invalid

LostFocus() includes code to prevent moving focus to another control if the current Value is invalid (the VFP base class behavior is to allow checkboxes to lose focus even if Valid doesn’t return .T.).

CommonPEMs

All First-Level Subclasses

First-Level Subclasses of Controls That Can Respond to User Activity

First-Level Subclasses of Controls That Have a Value Property

First-Level Subclasses of Controls That Can Be Bound to Data

First-Level Subclasses of Controls That Accept Text Data-Entry

cmdBase

The top-level commandbutton class in Visual MaxFrame, cmdBase abstracts the following noteworthy features:

CommonPEMs

All First-Level Subclasses

First-Level Subclasses of Controls That Can Respond to User Activity

ctrBase

The top-level container class in Visual MaxFrame, ctrBase abstracts the following noteworthy features:

CommonPEMs

All First-Level Subclasses

ctrNonVisible

ctrNonVisible starts a branch of the container hierarchy for containers that are invisible (.Visible = .F.). This provides containers that behave like subclasses of the VFP base class Custom, but with the ability to have members added in the Class Designer.

ctrApp is such a subclass, providing our application object, and described in detail elsewhere.

cusBase

The top-level custom class in Visual MaxFrame, cusBase abstracts the following noteworthy features:

CommonPEMs

All First-Level Subclasses

cusAppLibs

Instantiates to oLib, an application-level object described in detail elsewhere.

cusForms

Instantiates to oForms, an application-level object described in detail elsewhere.

cusMenu

Instantiates to oMenu, an application-level object described in detail elsewhere.

cusToolbars

Instantiates to oToolbars, an application-level object described in detail elsewhere.

cusUser

Instantiates to oUser, an application-level object described in detail elsewhere.

cusFormInstance

oForms.DoForm() adds an instance of cusFormInstance (named cusFormInstance1) to each modeless form it instantiates. cusFormInstance1 contains a numeric ID property oForms uses to identify each form.

cusPrivateDataSessionSETs

Executes SET commands scoped to private data sessions, instantiated by X3FW.VCX/frmData.PrivataDataSessionSETs().

edtBase

The top-level combo class in Visual MaxFrame, edtBase abstracts the following noteworthy features:

CommonPEMs

All First-Level Subclasses

First-Level Subclasses of Controls That Can Respond to User Activity

First-Level Subclasses of Controls That Have a Value Property

First-Level Subclasses of Controls That Can Be Bound to Data

First-Level Subclasses of Controls That Accept Text Data-Entry

frmBase

The top-level form class in Visual MaxFrame, frmBase abstracts the following noteworthy features:

Stand alone setup and cleanup

Load() and Unload() detect if the form is being run standalone from the Command Window and create oForms and oLib so they are available to the form as if it was running in the application.

Update any window menu item prompt in synch with the Caption

By default, Visual MaxFrame adds an item to a Window menu for each instantiated form, using the form Caption as the prompt text for the menu bar. The frmBase.UpdateFormCaption() method allows a place to update the form caption and make the necessary call to oMenu (when running in the app) to update the corresponding menu prompt text.

Refresh form-level controls of one base class

frmBase.RefreshFormControlsOfBaseClass() method allows selectively issuing a Refresh() message to each control of a passed base class, for controls of that base class that are direct members of the form (not controls of the specified base class that are members of containers on the form).

Use LockScreen in nested situations

frmBase.LockScreenHere() provides a standard way to toggle LockScreen, taking care of scenarios where you are uncertain whether LockScreen has already been toggled or not.

Take appropriate action on timeout

frmBase.OnTimeoutReached() provides a place to put code that properly releases the form when the form receives a message that any specified timeout condition has been reached.

Take appropriate action on the firing of the application timer

frmBase.OnAppTimerEvent() provides a place to put code that executes whenever the form receives a message that the application timer has fired.

Base QueryUnload for use in terminating the application

oForms queries forms’ QueryUnload event method when an ON SHUTDOWN/application exit has been requested. Three QueryUnload behaviors are provided in Visual MaxFrame Professional, but you can add/override as you see fit.

Make destruction seem instantaneous

Destroy() contains a THIS.Hide() message to make form destruction appear instantaneous.

Return a value to a calling .PRG/method (if the form is Modal or called by a wrapper)

frmBase includes a custom property iuRetVal that is RETURNed in UnLoad(), standardizing the returning of values from modal forms to the calling .PRG/method.

Coordinate a “linked” toolbar

Specify a linked toolbar class definition in icLinkedToolbar, and SetupLinkedToolbar() makes sure that toolbar is visible/available whenever that form has focus.

Coordinate user security

frmBase has a protected property ilReadOnly, set by a protected method SetReadOnly(), and an exposed method SetUserSecurity() that are all used to provide form controls with the information they need to set themselves properly according to the user’s global application rights specified in USERS.Usr_Rights. See oUser.

frmData

frmData subclasses frmBase into a branch of form classes that manage (generally) updatable data.

Buffering, data session

frmData sets BufferMode to optimistic and DataSession to private. Custom .ilForceTableUpdate property can override oApp.ilForceTableUpdate, used in .UpdateBuffers() method to determine the 2nd TABLEUPDATE() parameter.

Initial setup

frmData.Init() SETs the DATABASE, positions the record pointer in the main alias used in the form, allows for setting filters, relations, etc.

Issue SET commands

frmData.Load() calls frmData.PrivateDataSessionSETs() which ultimately issues SET commands scoped to private data sessions. Note that if you still get SET TALK output sent to the form during initialization of the form, you’re doing something in the Form.DataEnvironment, before the SET TALK OFF that’s executed automatically in the Form.Load(). When that happens, put the line of code

THISFORM.PrivateDataSessionSETs()

as the first line in the DataEnvironment.BeforeOpenTables() event method.

Post changes

frmData.UpdateBuffers() returns a logical value indicating whether or not all pending updates (adds, edits, deletes) to all view and tables were all posted successfully, wrapped in a single transaction.

Revert changes

frmData.RevertBuffers() reverts all pending updates to all open views and tables.

Refresh controls as data is changed elsewhere

frmData.RemoteRefresh() contains code to refresh the form on receiving a message from oForms that another open form on the current workstation has saved updated data that may need to be refreshed on this form.

Reporting

Store an .FRX filename to icFRXFileName, and use the PrintReport() method to run the report. Visual MaxFrame Professional includes report “object” class definitions to automate the process of running the report associated with a form via the icFRXFileName property.

Make information available to other objects

Since we recommend using a Private Data Session for all data-management forms, messaging between forms can be tricky -- attributes of a particular ALIAS() in one form has nothing to do with those of the same ALIAS() in another form. To help in querying/retrieving information about cursors in private data session forms, frmData includes a GetCursorInfo() method.

Move the record pointer

Moving the record pointer (Next/Previous/Top/Bottom) needs to be done with respect to the data session of a form. Instead of defining these behaviors in a custom class definition and adding an instance of that class to each data-management form, we have added a MovePointer() method that handles standard record-pointer navigation.

frmDataModal

frmDataModal subclasses frmData into a branch of modal dialogs that manage read-only data (picklist forms, for example). frmDataModal inherits the ability to return a value from frmBase, and its data-management attributes from frmData, and has its WindowType set to modal.

frmDataModal is actually a hybrid branch of the form class hierarchy, having some attributes from the data management and others of the non-data management modal branches, while not using the data update/revert features.

frmNonData

frmNonData is the other of 2 main branches of forms in the Visual MaxFrame form class hierarchy. It provides a branch of form classes that provide forms that do not handle data.

frmNonDataModal

frmNonDataModal subclasses frmNonData and starts the modal dialog branch of forms that either do not manage data at all, or do it in read-only mode and therefore don’t need buffering or a private data session. The only item set in this form definition is WindowType=1 Modal. frmNonDataModal inherits its ability to return a value to the calling .PRG/method from frmBase.

frmLogin

frmLogin is a generic password-login form class that can be easily subclassed once per application. While it does access the Users table to validate the UserID+Password, it is in the non-data branch of the forms hierarchy because we call it from oUser, which opens the Users table in the default data session.

frmLogin provides basic 3-strikes-and-you’re-out behavior for password login. All default behaviors can be modified in subclasses by setting properties, and the default validation is in its own method for easier subclassing. See the description of oUser for more information.

frmReportDestination

frmReportDestination is a generic “Please Select Output Destination” form which can be called directly (using X3WRPFRM.PRG) or can be used for more specific subclasses. Visual MaxFrame Professional contains a more robust report destination dialog, with more features, in X3FWFRM.VCX.

grdBase

The top-level grid class in Visual MaxFrame, grdBase abstracts the following noteworthy features:

Specific ColumnCount

When you create a grid class, the number of columns you set via ColumnCount cannot be decreased in subclasses. And any columns added in the Form/Class Designers do not inherit/match any columns already in the class definition. This might seem to indicate you’d have to create a separate class for each grid you’d ever need. We took a different approach, based on the fact that you can change ColumnCount at runtime.

If you increase ColumnCount at runtime, the added columns don’t inherit any characteristics from the other pre-defined columns in your class definition -- they are instances of the VFP base class Column. On the other hand, if you decrease ColumnCount at runtime, you don’t lose any desired PEMs.

That’s why grdBase contains 10 columns (ColumnCount=10), more than most grids ever need, and each column has the necessary properties and methods for the behaviors we want for our base grid. At runtime we set ColumnCount to the actual number needed (stored in the custom inColumnCount property) in the Init() and discard the extra columns. In the Form/Class Designers, create the grid the way you want it and ignore the extra columns. The only inconvenience is the extra columns, headers, and textboxes that display in the object dropdowns in the Designers.

Of course, if you add other controls to grid columns in your subclasses, you must be sure to apply appropriate method code from the default textboxes in the class definition.

Highlight the entire current row

grdBase has methods that accomplish highlight of the entire current row, based on color properties you can set.

Real refresh

grdBase has a RealRefresh() method to accomplish what you really mean when you intend to refresh a grid.

CommonPEMs

All First-Level Subclasses

First-Level Subclasses of Controls That Can Respond to User Activity

imgBase

The top-level image class in Visual MaxFrame, imgBase abstracts the following noteworthy features:

CommonPEMs

All First-Level Subclasses

First-Level Subclasses of Controls That Can Respond to User Activity

lblBase

The top-level label class in Visual MaxFrame, lblBase abstracts the following noteworthy features:

Refreshable

VFP3.0b fires the custom Refresh() method in the same fashion as it does the Refresh() of controls that include it natively. You can use that behavior to put Refresh(0 code that executes on THISFORM.Refresh() as well as an explicit Refresh(), so labels can have the same behavior as bound controls. lblBase.Refresh() updates THIS.Caption based on anything you add to the BoundCaption() method.

WARNING!!! Visual FoxPro 5.0 does not support this “auto-refresh” behavior, and we do not recommend using it. We include the above for backward compatibility with existing 3.0b systems built on Visual MaxFrame.

CommonPEMs

All First-Level Subclasses

First-Level Subclasses of Controls That Can Respond to User Activity

lstBase

The top-level listbox class in Visual MaxFrame, lstBase abstracts the following noteworthy features:

Alias-based features

When you set RowSourceType = 2-Alias in the Properties Sheet for any listbox instance/subclass, THIS.Requery() is called in the Init().

Also, lstBase.UniqueAlias() returns a unique alias name, useful in situations where you need more than one instance of the same class in the same form.

SQL-Select-based features

Destroy() includes code to USE IN the cursor used to populate the RowSource if RowSourceType=3, SQL cursor.

Array-based features

lstBase has a custom iaList[] array property for use when RowSourceType = 5-Array

When you set RowSourceType = 5-Array in the Properties Sheet for any listbox instance/subclass, you get the following “automatic” behaviors in the Init():

THIS.RowSource is set to "THIS.iaList"

THIS.Requery() is called, which is where you put code to (re-)populate the list

CommonPEMs

All First-Level Subclasses

First-Level Subclasses of Controls That Can Respond to User Activity

First-Level Subclasses of Controls That Have a Value Property

First-Level Subclasses of Controls That Can Be Bound to Data

olbBase

The top-level OleBoundControl class in Visual MaxFrame, olbBase abstracts the following noteworthy features:

CommonPEMs

All First-Level Subclasses

First-Level Subclasses of Controls That Can Respond to User Activity

opgBase

The top-level optiongroup class in Visual MaxFrame, opgBase abstracts the following noteworthy features:

Prevent a Delete keypress from selecting a \<A hotkey commandbutton

In optionbuttons and checkboxes, pressing the Delete key selects any commandbutton that has a \<A hotkey (a <Save> button, for example). All the optionbuttons in opgBase contain KeyPress code to “eat” Delete keystrokes.

Specific ButtonCount

When you create an optiongroup class, the number of buttons you set via ButtonCount cannot be decreased in subclasses. And any buttons added in the Form/Class Designers do not inherit/match any buttons already in the class definition. This might seem to indicate you’d have to create a separate class for each optiongroup you’d ever need. We took a different approach, based on the fact that you can change ButtonCount at runtime.

If you increase ButtonCount at runtime, the added buttons don’t inherit any characteristics from the other pre-defined buttons in your class definition -- they are instances of the VFP base class OptionButton. On the other hand, if you decrease ButtonCount at runtime, you don’t lose any desired PEMs.

That’s why opgBase contains 10 buttons (ButtonCount=10), more than most optiongroups ever need, and each button has the necessary properties and methods for the behaviors we want for our base optiongroup. At runtime we set ButtonCount to the actual number needed (stored in the custom inButtonCount property) in the Init() and discard the extra buttons. In the Form/Class Designers, create the optiongroup the way you want it and ignore the extra buttons. The only inconvenience is the extra buttons that display in the object dropdowns in the Designers.

There is no way to substitute your own optionbuttons for the VFP base class OptionButton buttons short of creating your own OptionButton classes in .PRG code and, at runtime, RemoveObject()ing the ones in the optiongroup class and AddObject()ing yours. In general, we do not recommend this practice.

CommonPEMs

All First-Level Subclasses

First-Level Subclasses of Controls That Can Respond to User Activity

First-Level Subclasses of Controls That Have a Value Property

First-Level Subclasses of Controls That Can Be Bound to Data

pgfBase

The top-level pageframe class in Visual MaxFrame, pgfBase provides our base pageframe class. In contrast with grdBase and opgBase, we set PageCount to 2 in pgfBase. We decided not to incorporate 10 pages in our top-level class and remove pages at runtime.

Instead, we include the 2 default pages in our base class and include code for each page in subclasses, with reminders to replicate the code in pages added in subclasses/instances, or use CommonPage...() methods as we’ve done in the pgfPageRefresh subclass.

pgfPageRefresh

Pageframes have a basic behavior that takes a little getting used to: only controls on the visible page are refreshed. While this may not seem like a good thing, it is -- there is a performance benefit to only refreshing the showing page. The user may not activate any other pages, or not until the data has changed.

The solution is to make sure non-active pages get refreshed when necessary. Many VFP developers recommend adding THIS.Refresh() to each page’s Activate event method, but that means refreshing pages on activation even if nothing has changed since the last time they were activated.

So pgfPageRefresh contains properties and methods that make sure pages are only refreshed when as they are activated, but only if they haven’t already been refreshed for the current set of data. The code is called by a special (invisible) textbox added to each page at runtime, whose UIEnable and Refresh methods send messages to the appropriate CommonPage..() methods of pgfPageRefresh. The special “voyeur” textbox is the txtPageRefresh class, also contained in X3FW.VCX.

shpBase

The top-level shape class in Visual MaxFrame, shpBase abstracts the following noteworthy features:

CommonPEMs

All First-Level Subclasses

First-Level Subclasses of Controls That Can Respond to User Activity

spnBase

The top-level class in our spinner hierarchy, spnBase abstracts the following noteworthy features:

CommonPEMs

All First-Level Subclasses

First-Level Subclasses of Controls That Can Respond to User Activity

First-Level Subclasses of Controls That Have a Value Property

First-Level Subclasses of Controls That Can Be Bound to Data

First-Level Subclasses of Controls That Accept Text Data-Entry

tbrBase

This is our base Toolbar class. It includes PEMs required to collaborate with X3FW.VCX/cusToolbars and X3FW.VCX/frmBase to yield "G"lobal or "L"inked toolbars.

Destruction is instant

THIS.Hide() in THIS.Destroy() ensures that the toolbar appears to release immediately instead of slowly, one button at a time.

Specify Global or Linked

Init() receives a parameter (defaults to “G”) specifying whether the toolbar is “G”lobal or “L”inked.

Provide for initial positioning and layout

Init() calls a custom InitialPositioning() method where you can put code to set the initial DockPosition, Top, Left, Height, Width, perhaps from values stored to the USERPREFS table.

Provide for resizing, dynamic management of layout properties

AfterDock() and UnDock() call Resize(), since both actions frequently involve changing the toolbar’s physical layout/appearance.

Provide for an associated menu

Linked toolbars should generally be accompanied by an associated menu to provide non-mouse users access to the toolbar actions. We have added a LinkedMenu() method, called from Hide() and Show(), to make it easy to specify a menu that can be managed automatically in synch with the linked toolbar’s appearance.

Provide for saving attributes for restoration in the next instantiation

Once you’ve added toolbars to an application, you’ll likely want to save attributes when the toolbar is released, restoring those values the next time the user wants that toolbar. To do so, put the code in the custom SaveAttributes() method, which is called at the appropriate points in the framework. Then put code in InitialPositioning() to restore those values -- InitialPositioning() is called from Init().

Ensure the current active control.Valid fires

By defintion, toolbar controls don’t receive focus (except for textboxes and combos), which can be a problem, resulting in invalid data. The custom IsActiveFormControlValid() method can be called from toolbar controls to make them behave more like a control on the form itself -- fire the current form control.Valid() before processing the toolbar control selection. IsActiveFormControlValid() calls oForms.ActiveControlValid().

Provide for behavior invoked every time a form is activated

Toolbars usually need to be kept in synch with forms in the application, whether linked or not. The custom FormActivate() method is the place to put such code, called as a result of each form.Activate().

Provide for common code on making a selection

Toolbar behavior is such that you are likely to want to write code that is called in conjunction with most, if not all, controls on a toolbar. ControlSelection() is a custom method we’ve added for that purpose.

Provide for setting ToolTipText

ToolTipText is an important feature of toolbar controls. The custom SetToolTipText() method is a place to put common code for updating the ToolTipText for toolbar controls, to keep them in synch with the current active form.

tmrBase

The top-level timer class in Visual MaxFrame, tmrBase abstracts the following noteworthy features:

CommonPEMs

All First-Level Subclasses

tmrEatStackedEvents

“Eat” stacked Timer events

tmrBase knows how to “eat” Timer events that fire as a result of accumulating when focus is “in Windows”:

in a menu (VFP 3.0b)

in a MESSAGEBOX() dialog (VFP3.0b)

in a form title bar or border (user is dragging/resizing) (VFP3.0b and VFP5)

in a scrollbar (VFP3.0b and VFP5)

while procedural code is executing (VFP3.0b and VFP5)

txtBase

The top-level textbox class in Visual MaxFrame, txtBase abstracts the following noteworthy features:

BorderStyle in grid columns

txtBase.Init() sets BorderStyle=0 if the textbox is in a grid column.

CommonPEMs

All First-Level Subclasses

First-Level Subclasses of Controls That Can Respond to User Activity

First-Level Subclasses of Controls That Have a Value Property

First-Level Subclasses of Controls That Can Be Bound to Data

First-Level Subclasses of Controls That Accept Text Data-Entry

txtPageRefresh

txtPageRefresh is a special textbox class that serves as a “voyeur” on each page of a pgfPageRefresh pageframe. pgfPageRefresh.Init() adds one to each page automatically, see pgfPageRefresh for more information.

Requirements/Assumptions

Every software developer has their own style and preferences for global settings and assumptions. While we have made specific efforts to keep Visual MaxFrame as open and flexible as possible, there are certain items of style and technique that we take for granted and around/upon which Visual MaxFrame is built.

SET DELETED ON

We’ve been SETting DELETED ON in application setup for Fox applications since the days of FoxBase+, and don’t plan to stop now. If you prefer your applications to use the default SET DELETED OFF, you may experience behaviors we didn’t intend. We recommend you switch to SET DELETED ON.

SET EXACT OFF

We’ve been SETting EXACT OFF in application setup for Fox applications since the days of FoxBase+, and don’t plan to stop now. If you prefer your applications to use SET EXACT ON, you may experience behaviors we didn’t intend. We recommend you switch to SET EXACT OFF.

Which is not to say there aren’t legitimate uses for SET EXACT ON -- there certainly are. But those uses are few and far between, and for those occasions we recommend SETting EXACT ON when needed and SETting EXACT OFF immediately afterward. This process is simple using the X3FWPPOP.VCX/cusPushPopSetOnOff class.

Optimistic Table Buffering

In general, the only kind of buffering we use is Optimistic Table Buffering because we always strive to have a single application-development methodology that works in all situations. Since you cannot use Pessimistic buffering in a Client-Serve/ODBC/remote data scenario, Optimistic buffering became the default choice. And since you can make Table buffering behave like Row buffering according to the value of the 1st parameter you send to =TABLEUPDATE() and =TABLEREVERT() (and when you call them), we found no need to switch back and forth between row and table buffering -- at any point in the code we know we can expect Optimistic Table Buffering to be in effect for updatable cursors.

If you choose to use a different buffering scheme, you should find good compatibility with Visual MaxFrame, as we’ve tried to accommodate any type of buffering. However, since we use Optimistic Table Buffering, it is the most heavily used and therefore tested/debugged.

Data-Entry in Views

In general, we do all our data-entry in (local or remote) views. Once again, this helps to have a single application-development methodology that works in all situations -- you can’t have controls bound directly to table fields where the tables are remote Client-Server/ODBC data sources. Also, doing data entry in views is a great technique for overcoming the shortcomings of when field/column rules fire in data-entry screens with controls bound to table fields.

If you choose to bind controls directly to table fields instead of view fields, you should still get good results from Visual MaxFrame, but you won’t be able to take advantage of any of the view-specific features particularly with regard to field rules that are built into Visual MaxFrame Professional.

Contained Tables

We strive to use VFP contained tables as much as possible because we like the features offered for tables contained in .DBCs.

If you choose to use VFP free tables and/or Fox2x tables, you should still get good results from Visual MaxFrame/Professional, but you won’t be able to take advantage of as may features we’ve built in for contained tables.

CONFIG.FPW

In general, we use a (production) CONFIG.FPW that is Included into each VFP project. Visual MaxFrame/Professional application setup expects (but doesn’t require) that the system menu be off and the “Microsoft Visual FoxPro” caption be removed from the title bar in the CONFIG.FPW:

TITLE =

SYSMENU = OFF

In VFP 5.0 applications, Visual MaxFrame/Professional expects (but doesn’t require) the following line in the (production) CONFIG.FPW to render the native VFP screen invisible:

SCREEN = OFF

We typically make use of 2 different CONFIG files during development:

CONFIG.FPW that contains production settings and is built into the .EXE

CONFIG.xxD (the “D” signifies “Development”) that is not Included into the VFP project. It sets up the development environment for that application, typically ensuring that PATH = <directories necessary during development> and anything else specific to the development environment.

Error handling

Here’s how Visual MaxFrame provides for global error handling:

First, on entering X3FWMAIN.PRG, we check for whether there is already an ON ERROR routine in effect.

If there is, we figure you installed your own initial ON ERROR routine before you called X3FWMAIN to run your application, and we do nothing, leaving it intact.

If X3FWMAIN.PRG starts and there is no ON ERROR routine already assigned, we assign a default one that is located in a local procedure InitialErrorHandler.

Early in oApp.Init(), we call THIS.InstallGlobalErrorHandler() to install our global error handler, X3ERROR.PRG. When an error is subsequently generated, X3ERROR is invoked and takes the prescribed action. For most errors, X3ERROR logs the error to an ERRORLOG.DBF table, saving as much information about the current state of affairs as possible.

If you want to handle errors some other way, simply override X3FW.VCX/ctrApp.InstallGlobalErrorHandler() in your oApp subclass.

When the application terminates, X3FWMAIN.PRG issues a plain ON ERROR statement.

In future enhancements we are considering form/control-level error handling features, but what we have implemented here will remain pretty much intact -- you need a global ON ERROR routine as a last resort.

Creating an Application

Here is an outline of the basic steps to creating an application based on Visual MaxFrame.

Setup

Make sure the Visual MaxFrame framework files are in your VFP path. Unzip MTVFPAF1.ZIP into a “library” directory and make sure that directory is in your path during development.

Make sure FOXTOOLS.FLL is in your VFP path. We’ve had reports of Windows ‘95 problems when the directory containing FOXTOOLS.FLL (usually the HOME() directory, where VFP is installed) is not available in the VFP path.

Create the Main Database and System Tables

Most applications are designed to have one main database no matter how many databases are ultimately used. If you can live with our naming convention of a two-character prefix for the application and all its files, you can use X3FWMAIN.PRG to create the Visual MaxFrame-required tables:

do x3fwdata with "MY", "ALL"

During the initial development stages, you can automate the process of creating sample data by creating a utility program something like this:

* MYDATA

clear all

close all

set talk off

set safety off

set exclusive on

do x3fwdata with "MY","ALL"

*

* optionally call a program (or programs) here that

* - adds fields/tags or updates field values in the framework tables

* - creates tables in the main application database

* - creates additional databases/tables

* - adds sample data to tables

* - adds rules, triggers, stored procedures

*

* If you have Visual MaxFrame Professional, see VMDVDATA.PRG in the

* \DVSTUFF directory of the example application for an example.

*

close all

open database MY

pack database

modify database nowait

return

If you cannot use the two-character naming convention, you can modify X3FWDATA.PRG to suit your needs and reuse in each new application. The bottom line is that you need a main database and the required tables created in X3FWDATA (see The X3 Framework Files section):

??SYSTEM/APPINFO (X3FWDATA.PRG adds required records with default values)

??CONFIG/APPCONFIG (X3FWDATA.PRG adds required records with default values)

??GENPK (not actually required for Visual MaxFrame)

??USERS/USERS (X3FWDATA.PRG adds 2 records with default values)

??REPCAT/REPORTCATALOG (used in Visual MaxFrame Professional, not Visual MaxFrame)

Create a Main Menu

Create your main system menu as you have always done in the Menu Designer. We have included X3FWMAIN.MNX, .MNT in to get you started:

MODI MENU X3FWMAIN

immediately save it as MYMAIN.MNX

generate MYMAIN.MPR

�

Figure 1 -- Create an initial main menu

Note that X3FW.VCX/cusMenu/oMenu uses a main menu named by the two-character application prefix plus “MAIN” by default. You can override this default by subclassing cusMenu and setting the icInitialMPR property. You will then also have to pass as a parameter the name of your menu subclass to X3FWMAIN.PRG from your main calling program.

Existing Menus

What if you have an existing system menu for an application already under development? No problem. We use the Visual FoxPro native Menu Designer. The only things you’ll have to modify will likely be the Command line for each menu selection, and perhaps any SKIP FOR condition.

Create a ??MAIN.PRG Main Calling Program

X3FWMAIN.PRG is what actually runs Visual MaxFrame applications. However, it is never the main calling program because each application has specific information X3FWMAIN needs to run successfully. Instead of creating a new version of X3FWMAIN.PRG for each application, we have designed X3FWMAIN.PRG to take advantage of parameters plus subclassing/inheritance to keep it as a single library routine that executes each application, standardizing application execution. As with any framework, we do not recommend modifying any files in a commercial product.

X3FWMAIN.PRG contains an example main calling program in comments at the end of the executable code.

Following our naming convention, the main calling program of every application is a program named with the two-character application prefix plus “MAIN.PRG”. In the “MY” example above, the main calling program would be MYMAIN.PRG and, at its simplest (using all the Visual MaxFrame defaults), would look like this:

* MYMAIN.PRG

clear all

close all

do x3fwmain with "MY"

return

Note that you can name your main calling program anything you want; its main job is to call X3FWMAIN. The 2-character naming convention is a MaxTech, Inc. VFP application development standard, and isn’t required for Visual MaxFrame/Professional.

Now you can execute DO MYMAIN at the Command Window, and the MY application runs, as shown in Figure 2. To login, use the default User ID “DEFAULT” and Password “PASSWORD” (note that the Password field is case-sensitive and must be entered in all caps).

�

Figure 2 -- The MY Application up and running

Create a Project

We create at least one main VFP project per application, named with the 2-character prefix of the application. Again, you can use whatever naming convention you prefer. Make sure FOXTOOLS.FLL is in your FoxPro path and:

MODI PROJ MY

Add MYMAIN.PRG to the Code tab, as the main program

Build the MY project

�

Figure 3 -- The MY project after an initial build, MYMAIN.PRG designated as the main program

Note that the Project Manager has pulled in

X3FW.VCX

X* library routines called by MYMAIN, X3FWMAIN, and the class definitions in X3FW.VCX

but has not pulled in the MYMAIN main menu. That is because oMenu executes MYMAIN.MPR by indirection and the Project Manager doesn’t know about files called by indirection or macro substitution. We remedy this situation the same way we did in Fox2x applications -- by adding a local procedure to the main calling program:

* MYMAIN.PRG

clear all

close all

do x3fwmain with "MY"

return

PROCEDURE pmFakeOut

do mymain.mpr

set library to foxtools.fll

return

The pmFakeOut procedure is never called anywhere in the application, but the Project Manager reads it and pulls into the project any program calls. For every program/form/report/etc. called by indirection in the application, we add a line to pmFakeOut to make sure the Project Manager knows about it. If you have Visual MaxFrame Professional, see the extensive pmFakeOut example in VMMAIN.PRG.

MODI PROJ MY, select the Build option again and MYMAIN.MPR is pulled into the project as it rebuilds.

Modify APPCONFIG Values as Needed

If you DO MYMAIN at the Command Window, it should run as before, illustrated in Figure 2.

The APPCONFIG table contains many application setup/configuration values; let’s change a few of them to modify the default behavior.

Application Title

The title of the application is stored in APPCONFIG.Ap_Item = “Title” and is installed in the _Screen.Caption and used in default system messages. To change the application title, simply modify the field in APPCONFIG:

use MYCONFIG

locate for upper(Ap_Item) = "TITLE"

replace Ap_ItemVal with "Visual MaxFrame Example"

use

Development Mode

When you first run MYMAIN.PRG, you have to log into the system manually. However, we encourage developers to automate the login process (unless they are working on something to do with login/security) to save time on entering the system. To that end, we have defaulted the login process to be automatic when running in “development mode”. This logical indicator is set according to APPCONFIG.Ap_Item = "DevModeExpr", which value is EVAL()ed and stored to a property indicating whether or not the app is being run in development mode (as opposed to production mode).

To set the application to run in development mode, Ap_ItemVal for Ap_Item = "DevModeExpr" must contain a character string which, when EVAL()ed, returns a logical .T. on your workstation. You are no doubt using a similar convention already. Set Ap_ItemVal for Ap_Item = "DevModeExpr" to the expression you’re already using, or something that definitely evaluates to a logical .T.:

use MYCONFIG

locate for upper(Ap_Item) = "DEVMODEEXPR"

replace Ap_ItemVal with ".T.", Ap_ItemDTp with "L"

use

View the changes

Now DO MYMAIN.PRG and note the changes (see Figure 4):

The _Screen.Caption displays the specified "TITLE" text

Login is “automatic”, the default login behavior when APPCONFIG.Ap_ItemVal for Ap_Item = "DevModeExpr" evaluates to a logical .t.

Once you’ve set the development-mode indicator, if you have a valid class definition in the "DevToolbarClass" record in APPCONFIG, your developer’s toolbar is instantiated on application startup. If you have Visual MaxFrame Professional, the default is the Developer’s Toolbar in X3TOOLS.VCX, as shown in Figure 4.

�

Figure 4 -- APPCONFIG options configured

Subclass Application Objects As Needed

Most application setup/configuration features are set in the application objects. If you need variations on the defaults, inheritance makes it easy to subclass what you need. The examples below are of oApp/ctrApp, but the same applies to all the application objects/classes.

Status Bar and Clock

By default, oApp SETs STATUS BAR OFF. We did that because Visual FoxPro still doesn’t provide total programmatic control of messages displayed in the status bar. But you may decide to provide a status bar in a particular application, and want to put the clock in the status bar.

It would be a bad idea to modify X3FW.VCX/ctrApp for (at least) two reasons:

That setting is inherited by all other apps built from Visual MaxFrame, and for some of them that may be incorrect behavior

The next time you upgrade Visual MaxFrame to a newer version, you have to remember to go back and keep you own modifications in synch

Instead, put inheritance to work and subclass ctrApp and simply customize the application setup process. You can subclass ctrApp in the visual Class Designer, but this is one of the few times where we sometimes recommend creating class definitions in code. If subclass variations of the application-level classes are few and minor (as they usually are), we frequently put them in the main calling program. Here’s what it takes in MYMAIN.PRG:

* MYMAIN.PRG

clear all

close all

do x3fwmain with "MY", ;

 .f., ;

 "ctrMYApp"

return

PROCEDURE pmFakeOut

do mymain.mpr

return

DEFINE CLASS ctrMYApp AS ctrApp

 Name = "ctrMyApp"

 PROTECTED PROCEDURE SetupCustom

 set status bar on

 set clock status

 ENDPROC

ENDDEFINE

There are 2 changes:

An additional DEFINE CLASS..ENDDEFINE class definition for ctrMYApp, a subclass of the ctrApp/oApp Visual MaxFrame application object class. We provided an empty SetupCustom() method to ctrApp for just such uses, and the only code needed here is to address the modified behaviors of the status bar and the clock. Other modifications might require subclassing/overriding entire methods or adding new methods, properties, etc. The benefit of OOP is that the rest of the application object attributes and behaviors continue to run as it was before via inheritance -- you’re programming by exception.

Since X3FWMAIN.PRG instantiates oApp from X3FW.VCX/ctrApp by default, you must pass the name of your oApp (sub)class in the third parameter sent to X3FWMAIN.PRG.

Now when you DO MYMAIN, the status bar is enabled and the clock is located in the status bar.

Allow Multiple Instances of the Application at One Workstation

By default, oApp prohibits multiple instances of the same application running on one workstation. This behavior is enforced by the SetupMultipleInstances() method. But suppose you create an application for which you do want to allow the user to fire up more than once per workstation? Simply override the SetupMultipleInstances() method:

* MYMAIN.PRG

clear all

close all

do x3fwmain with "MY", ;

 .f., ;

 "ctrMYApp"

return

PROCEDURE pmFakeOut

do mymain.mpr

return

DEFINE CLASS ctrMYApp AS ctrApp

 Name = "ctrMyApp"

 PROTECTED PROCEDURE SetupCustom

 set status bar on

 set clock status

 ENDPROC

 PROTECTED PROCEDURE SetupMultipleInstances

 NODEFAULT

 ENDPROC

ENDDEFINE

Add Timeout

By default, oApp does not setup any timeout behavior. There are several properties and methods that provide and control application timeout:

oApp.inTimeoutSeconds must be set to the number of seconds of inactivity before timeout

oApp.icTimeoutType must be set to "A" to specify timeout of the entire application (the other option is "M" to simply timeout of all open forms and leave the user at the system menu). Actually, once oApp.inTimeoutSeconds has been set to a number greater than zero, any oApp.icTimeoutType other than "M" is ignored and defaults to "A", but we’ll set icTimeoutType explicitly anyway.

oApp.tmrAppTimer must be enabled, with an interval set to an interval that is a multiple of the timeout seconds

oApp contains one method to set each of the above properties, plus two methods that between them setup the application timer and any timeout during application setup. So there are actually 3 ways to setup for timeout.

Specified in APPINFO and APPCONFIG

All three properties can be set by entering them in the appropriate records of APPINFO and APPCONFIG. oApp calls SetupAppTimer() and SetupTimeout() from oApp.BeforeReadEvents() just as application setup completes and before the READ EVENTS allows user activity. So one way to setup for application timeout is to specify the necessary values in APPINFO and APPCONFIG fields, read by the Setup methods above. The APPINFO.App_Item records are:

AppTimerInterval Interval for the application timer

TimeoutSeconds Number of seconds before timeout

And the APPCONFIG.Ap_Item record is:

TimeoutType Timeout type "A"pp or "M"enu or "N"one

We implemented timeout this way so that any developer can test/verify timeout behaviors without having to subclass the application object, which is not likely to be possible in a team development environment. And since some clients will want/need to manage their timeout behavior themselves, the APPINFO values can be maintained by the system administrator in an “application setup” form of your design.

Specified in oApp subclass

Any desired application timeout can be “hard-coded” into your oApp subclass. If you do so, you will override the behavior described above, and values entered in APPINFO records are ignored. Here is what the ctrApp subclass we’ve been describing would look with two more subclassed methods to specify timeout behavior:

DEFINE CLASS ctrMYApp AS ctrApp

 Name = "ctrMyApp"

 PROTECTED PROCEDURE SetupCustom

 set status bar on

 set clock status

 ENDPROC

 PROTECTED PROCEDURE SetupMultipleInstances

 NODEFAULT

 ENDPROC

 PROTECTED PROCEDURE SetupTimeout

 THIS.icTimeoutType = "A"

 THIS.SetTimeoutSeconds(60) &&& one minute

 ENDPROC

 PROTECTED PROCEDURE SetupAppTimer

 THIS.SetAppTimerInterval(300000) &&& 5 minutes

 ENDPROC

ENDDEFINE

Specified during application operation

ctrApp includes 3 exposed methods to set the three properties that determine timeout behavior. This is so that you can provide a “System Setup” form and allow a system administrator to maintain the properties by updating the two corresponding APPINFO records (see above). Of course, if you choose this option, you would not override SetupTimeout() and SetupAppTimer() in your oApp subclass.

Store timeout attributes in APPINFO and APPCONFIG.

Accept the default oApp setup behavior using APPINFO and APPCONFIG settings.

Create a form in which to maintain the APPINFO value for TimeoutSeconds and AppTimerInterval. On updating the TimeoutSeconds/AppTimerInterval, update the 3 related properties via their corresponding oApp methods: SetAppTimerInterval(), SetTimeoutType(), SetTimeoutSeconds().

Create Application-Specific Forms

Once your framework is established, create application-specific forms (and any other application features you need). The important thing here is to make sure that all your forms inherit from the X3FW.VCX form class hierarchy. Otherwise your forms won’t inherit the features built into the framework, and will likely crash when application objects expect PEMs defined in Visual MaxFrame.

Actually, the form classes in X3FW.VCX are mostly abstract classes, meant to be further subclassed into more specific forms. For example, Visual MaxFrame Professional includes X3FWFRM.VCX, which contains more abstract data-entry form classes, plus several classes that are specific enough to be used as the basis for creating application-specific forms/subclasses.

New Forms

For maintenance, upgrade, and support reasons, we strongly recommend never making changes in any Visual MaxFrame files. Instead, you should create subclasses out of Visual MaxFrame as you need them, on a per-application basis. Then, when you need to implement app-specific behavior to be inherited by all your forms of a specific type, you have a place to put the method code or change property settings.

If you have Visual MaxFrame Professional, identify the lowest-level (most specific) form class from X3FWFRM.VCX on which your new forms/form classes can be based.

Existing Forms

If you already have one or more form class hierarchies, you need to redefine them (via the Class Browser or by modifying the Class and ClassLoc fields of the .VCXs directly) to inherit from the appropriate

Since your forms now inherit attributes from Visual MaxFrame that weren’t there before, you need to make sure that any required properties are set, and you should check over the zReadMe and method code to familiarize yourself with the default behaviors set in Visual MaxFrame via inheritance. For example, there is one form property that must be set in all data-entry forms, .icMainAlias. In order to successfully instantiate data-entry forms inheriting from frmData, this property must contain the alias of the “main” table in the form because it drives many of the “automatic” features. If .icMainAlias is not set, or set to an illegal value, your forms generate VFP errors as the frmData and frmBase methods attempt to take action based on the value of .icMainAlias. (In that regard, note that if you don’t set .icMainAlias, but you do set the Form.DataEnvironment.InitialSelectedAlias property, that value is defaulted to .icMainAlias in the Form.Load.)

Add Forms to the Main Menu and Project

When you’ve created functioning forms and need to add them to your application as menu selections, here’s how to do it.

Add Form Selections to the Main Menu

.SCX-based forms

Add the appropriate item to the menu in the Menu Designer. The Command is a call to oMenu.DoForm(), passing the corresponding parameters, unless the form is a modal form, in which case we recommend using a direct DO FORM command. (see Figure 5)

Add a DO FORM line to local procedure pmFakeOut of the main MYMAIN.PRG calling program to make sure the form is pulled into the project by the Project Manager.

Rebuild the project to update the menu and add the additional files to the Project Manager.

.VCX-based forms

Add the appropriate item to the menu in the Menu Designer. The Command is a call to oMenu.DoForm(), passing the corresponding parameters, unless the form is a modal form, in which case we recommend using a direct call to X3WRPFRM() or some other “wrapper” program. (see Figure 5)

If the .VCX containing the form is not already in the project (Classes tab), or if you want to make sure it remains in the project no matter what, add a SET CLASSLIB TO line to local procedure pmFakeOut of the main MYMAIN.PRG calling program. (If you have Visual MaxFrame Professional, see the pmFakeOut local procedure of VMMAIN.PRG in the example application)

Rebuild the project to update the menu and add the additional files to the Project Manager.

�

Figure 5 -- Menu Designer showing calls to instantiate forms, run a program

Menu Command syntax

Here is the syntax of the menu commands for the above form options. See X3FW.VCX/cusForms.DoForms() comments for additional parameter information and to examine how the actual form instantiation is accomplished.

.SCX-based form:

oMenu.DoForm("MyForm")

where MyForm.SCX is a modeless form created in the Form Designer

.VCX-based form:

oMenu.DoForm("frmMyForm,MyFrmVCX","C",.t.)

where frmMyForm is the name of a (modeless) form class created in the Class Designer

Add Form Selections to the Project

As indicated in the above instructions, all the above menu selections result in the instantiation of the desired form (class), but all references to the files involved is via indirection in oForms.DoForm(). In order to have the Visual FoxPro Project Manager “pull in” the needed files, you need to add the filenames to PROCEDURE pmFakeOut in MYMAIN.PRG:

* MYMAIN.PRG

clear all

close all

do x3fwmain with "MY", ;

 .f., ;

 "ctrMYApp"

return

PROCEDURE pmFakeOut

do mymain.mpr

do form MyForm

set classlib to MyFrmVCX

return

Add Programs to the Main Menu and Project

When you want to add .PRG-based functions to your application as menu selections, here’s how to do it.

Add .PRG-based Selections to the Main Menu

Add the appropriate item to the menu in the Menu Designer. The Command is a call to oMenu.DoPRG(), passing the name of the .PRG and any desired parameters. (see Figure 5)

oMenu.DoPRG("MyPRG")

Add a DO line to local procedure pmFakeOut of the main MYMAIN.PRG calling program to make sure the program is pulled into the project by the Project Manager.

Rebuild the project to update the menu and add the additional files to the Project Manager.

Add .PRG Selections to the Project

.PRG-based menu selections are also executed via indirection, so an explicit call to the .PRG is needed in PROCEDURE pmFakeOut in MYMAIN.PRG to force the Project Manager to recognize and “pull in” the .PRG file:

PROCEDURE pmFakeOut

do mymain.mpr

do form MyForm

set classlib to MyFrmVCX

do MyPRG

return

Common Scenarios

One of the challenges in an OOP environment is figuring out everything that takes place to accomplish a task. The actual code may be in many different objects, all cooperating to get the overall job done. Here are some typical scenarios and the flow of events (messages) they entail.

Exiting the application

There are usually two ways to exit a FoxPro application -- by selecting Exit from the menu, and by invoking the ON SHUTDOWN via the Close option on the _Screen menu. In both cases the scenario is so similar that ultimately the same code is used to do the application termination:

Via the menu Exit option

The command in the Menu Designer is oMenu.RequestClearEvents().

oMenu.RequestClearEvents() asks oForms.ActiveControlValid() if the current control on the current form contains valid data.

If not, the Valid is invoked manually and focus is left in the invalid control on the current form. Exit is denied, end of scenario.

If oForms.ActiveControlValid() reports to oMenu that the current control of the current form does contain valid data, oMenu.RequestClearEvents() sends a message to the application object, oApp.ClearEvents().

oApp.ClearEvents() analyzes the current situation and if there are open forms, sends a oForms.ReleaseAllForms() message to the forms manager. If the forms manager reports that even one form could not be closed (by querying each form’s QueryUnload() event method), the user is notified and the app is not terminated, usually because one or more forms are in Add/Edit mode.

When oForms.ReleaseAllForms() reports to oApp.ClearEvents() that all open forms were successfully closed, oApp issues the CLEAR EVENTS command, returning control to X3FWMAIN.PRG which cleans up by releasing each of the global application-level objects in the reverse order of instantiation.

Via ON SHUTDOWN

As the oApp application object is instantiated, its Init() calls SetupOnShutdown() and the ON SHUTDOWN command is instructed to call oApp.OnShutdown().

The user selects Close from the _Screen menu, either by clicking on the control box with the mouse and selecting Close, or by double-clicking on the controlbox.

VFP invokes the ON SHUTDOWN procedure, oApp.OnShutdown().

oApp.OnShutdown() invokes the same sequence of events as selecting Exit from the File menu would. oApp.OnShutdown() asks oForms.ActiveControlValid() if the current control on the current form contains valid data. If not, the Valid is invoked manually and focus is left in the invalid control on the current form. Shutdown is denied, end of scenario.

oForms.ActiveControlValid() reports to oApp that the current control of the current form does contain valid data.

oApp.OnShutdown() calls THIS.ClearEvents().

see #5 in the Via the menu Exit option section

see #6 in the Via the menu Exit option section

Timing out of the application

Timeout is enabled by setting the timeout and application-timer properties in oApp. As the application runs:

Menu selections and selected form control events send messages to oApp.SetLastUserActivity(), where oApp updates the DATETIME() of the last user activity.

oApp contains a timer and every time it fires, oApp.OnTimer() compares the interval since the last reported user activity to any specific timeout interval.

Once timeout has been reached, oApp.OnTimer() sends a message to oForms.TimeoutAllForms() that it’s time to hit the road.

oForms.TimeoutAllForms() broadcasts a message to all open forms to execute their OnTimeoutReached() method.

Each form bails out via its OnTimeoutReached() code. X3FW.VCX/frmBase.OnTimeoutReached() has a single THIS.Release() line of code, which is inherited by all forms in the Visual MaxFrame form hierarchy, and can be subclassed to provide for additionally-required cleanup chores.

oApp.OnTimer() issues THIS.ClearEvents() and the application terminates.

Making a menu selection

Here’s what happens when the user selects a form activity from the system menu:

The command in the Menu Designer is a message to the menu manager, oMenu.DoForm(..).

oMenu.DoForm(..) sends a message to the forms manager asking it if the current control on the current form (if any) has a valid Value. If not, the Valid of the current control on the current form is fired manually, and the user may not leave that control until its data is valid.

oForms.ActiveControlValid() reports to oMenu that the current control of the current form does contain valid data.

oMenu.DoForm(..) sends a message to oForms.DoForm(..) to instantiate the passed form.

oForms.DoForm(..) processes the request and runs the requested form, adding it to its array of instantiated forms. If it is a modeless form, immediately after instantiation, oForms.DoForm() adds an instance of cusFormInstance to the form and adds a bar to the Window menu with the form’s Caption as the prompt text.

If the form has a specified linked toolbar, its Activate sends a message to oForms.DoForm() to that effect. oForms.DoForm() checks to see if the toolbar already exists, and if so, Show()s it. If not, it instantiates the linked toolbar and makes it visible.

If the menu selection was to call a program, oMenu.DoPRG() checks with oForms to make sure the current control of the current form (if any) is Valid, and then executes the passed .PRG filename.

Frequently-Asked Questions

I call a modal form in the DataEnvironment of all my forms. When I exit the modal form and the data-entry form instantiates, VFP crashes as oMenu tries to add the Window menu item. Is this a bug, or am I doing something wrong?

It sounds like you’re calling the modal form in the DataEnvironment via oForms.DoForm(MyModal.SCX). Throughout Visual MaxFrame, there is no real need to call modal forms using the oForms.DoForm() method, and in this special case, you should definitely DO FORM MyModal instead.

How can I specify my own Developer’s Toolbar to be available when my app runs?

Application setup code checks the ??CONFIG.DBF/APPCONFIG table for a record with Ap_Item = "DevtoolbarClass". If one is found, the class name contained in the Ap_ItemVal field is instantiated, assumed to be a toolbar. You can optionally add the name of the .VCX containing the toolbar class definition, in case that .VCX is not in the SET CLASSLIB TO list. For example, here are two typical ??CONFIG.DBF/APPCONFIG Ap_ItemVal values for the "DevtoolbarClass" record:�"tbrDevelopersToolbar"�"tbrDevelopersToolbar,TOOLBARS.VCX"

Another ??CONFIG.DBF/APPCONFIG record optionally specifies the system menu pad on whose pull-down menu any specified Developer’s Toolbar will be installed: Ap_Item = "DevtoolbarPad".

I'm curious as to why X3FW.VCX/grdBase doesn’t contain an instance of txtBase in each column of the grid. Instead I see one of the default VFP textboxes in each column. I see that X3FW.VCX/txtBase even has code based on being in a grid from the Visual MaxFrame framework.

There are several reasons, mostly because of the way VFP treats subclasses of containers:

you can’t delete members of classes, so you’d be stuck with a txtBase in each grid column, whether you wanted it or not

you might very well want controls other than textboxes in any particular grid column. That decision must be made much lower in the class hierarchy, or at the instance level.

at the individual application level, you won’t be using instances of txtBase in your (data-entry) grid columns. In fact, you won’t be using any classes directly from the framework -- when you want controls other than the default VFP textboxes in a particular column, you’ll be using an application-specific subclass.

for many read-only grids, the default VFP textboxes are all you need

How can I add my own controls to my subclasses/instances of X3FWGRD.VCX/grdBase? Visual FoxPro won’t let me delete the default Text1 textboxes.

Simply add the desired controls to the appropriate grid columns, and set the Column.CurrentControl property to indicate your control instead of the default Text1 textbox. You don’t have to delete the Text1 textbox.

I’ve added my own data-entry controls to grid columns, but sometimes when I run the form, I lose the CurrentControl property setting, and it’s even gone when I return to the Form/Class Designer. I thought I was going crazy until I had someone watch over my shoulder and verify that I set the CurrentControl property in the Properties Sheet, only to have it subsequently disappear. What can I do?

We’ve seen this behavior, too. After several sessions in therapy, we decided that this is a VFP “infelicity”. Every time we’ve encountered it, we’ve been able to solve it by setting the CurrentControl property in method code, usually using our SetColumnControlSources() method at the grid level.

When I create a class that includes a grid, everything looks fine in the Class Designer, but sometimes when I run the resulting form, I lose my ControlSource properties for columns. What’s going on?

Visual FoxPro 3.0b exhibits this behavior quite frequently, with grid classes in the Class Designer (we’ve not seen it with ControlSources set in grids in the Form Designer). That’s why we have added the SetColumnControlSources() method to X3FW.VCX/grdBase. We recommend setting Column.ControlSource for each column in code in SetColumnControlSources() instead of in the Properties Sheet. This has solved the problem for us every time.

Support For 3rd Party Tools

Given the open nature of Visual MaxFrame, you should be able to adapt/modify it to work with your favorite add-on tools and extensions.

In some cases, we have made specific provision for certain 3rd party products in the Visual FoxPro market, and some other products are readily-compatible:

Stonefield Database Toolkit

By using the “hook” pattern of Object-Oriented Programming, we have made specific provision for implementing the database features and services of the Stonefield Database Toolkit.

For more information, see the following:

X3FW.VCX/ctrApp.SetupExternalTools

X3FW.VCX/ctrApp.CleanupExternalTools

X3FWLIBS.VCX/cusDBCSvc.zReadMe

Total flexibility in calling a mix of SDT and Visual MaxFrame features is provided in the custom “map” class definitions included in X3FWMISC.VCX, distributed with Visual MaxFrame Professional.

FoxFire!

We have not made specific provision for FoxFire!, but one Visual MaxFrame developer reports that running FoxFire! is a simple as

making sure the FoxFire! directory (defaults to \FF30V) is in the path

creating the appropriate menu selection to call FoxFire! via the DO FFSTART.APP command

with no additional Visual MaxFrame-specific logic or work required.

Steven Black’s INTL Toolkit

We currently have no INTL-specific implementation in Visual MaxFrame, but in a future version we plan on providing the necessary hooks to INTL’s message and string-translations services. You’ll be able to “hook” other INTL strategies as well. As of this writing, we do not know how much of the implementation will be in Visual MaxFrame, and how much in the Professional version.

Support

All (MaxTech-provided) support for Visual MaxFrame and Visual MaxFrame Professional is fee-based. Why?

MaxTech, Inc. does not sell Visual MaxFrame as a commercial product. We have placed it in the Public Domain for anyone who is interested in using a relatively simple VFP application framework. We do not have the resources to provide free support for a free product.

Visual MaxFrame Professional is a commercial product, but it came down to a choice between to options when setting the purchase price:

charge $500-$700 US and provide some sort of limited free support

charge $299 US and make all support fee-based

We hope you agree with our decision in this regard.

How to receive fee-based support

If you have specific Visual MaxFrame questions, need help, etc., write up a description and post such to our Visual MaxFrame support CompuServe address: 74657,2277. Be sure to include as many details as possible.

Technical support is fee-based, at the rate of $30.00 for the first 5 minutes ($30 minimum) plus $2 per minute thereafter for the time it takes to research and/or provide the requested information. All rates are in US funds and you must make payment arrangements in advance of using this service. In addition to the actual support time, you will be billed for any long-distance phone charges incurred by MaxTech, Inc. for return calls you request. Call 1-800-6MAXTEC if you would like to apply for a support account or to arrange ongoing credit card payment authorization.

Although we don’t guarantee it, we strive for turnaround on support queries within 24 hours.

As described below, if we determine that your question/problem is due to a bug in Visual MaxFrame, there is no charge for the support incident.

How to receive free support

As with all FoxPro questions and problems, you have the option to post messages on the Fox Users forum on CompuServe (GO FOXUSER). If you do, please be sure to use the Third Party Products section, and preface your message header with VM:. We cannot guarantee either the timeliness of a response, nor its accuracy, as we do not formally monitor that area, and the help you receive will be from your fellow VFP developers, not MaxTech, Inc. staff.

Reporting Bugs

If you find genuine bugs in the course of using Visual MaxFrame, we’d like to hear about it so we can fix the problem. Please do so by e-mail to the Visual MaxFrame support CompuServe address: 74657,2277, using a standard bug reporting format:

include a brief title describing the problem

list the exact Steps To Reproduce

describe the Observed Behavior

describe the Expected Behavior

include any other related information that you think would be helpful

All genuine bugs properly reported in the above fashion receive prompt attention, and the sender receives a reply describing the fix or other explanation for the observed behavior.

DO NOT SEND EXAMPLE CODE UNLESS SPECIFICALLY REQUESTED TO DO SO!

If you contact us for fee-based support, and we determine that your problem/question is due to a VMP bug, there is no charge for the support incident.

Comments/Suggestions/Features

We welcome your comments and suggestions for improvement. We’d also like to hear from you (via e-mail, as described above) if there are features you’d like to see implemented in future versions of Visual MaxFrame/Professional.

Updates

We publish updates to Visual MaxFrame and Visual MaxFrame Professional as warranted. You can find the latest version of Visual MaxFrame (public domain) as MTVFPAF1.ZIP:

in the Classes, .VCXs library section of the the Visual FoxPro Forum on Compuserve (GO VFOX)

in the 3rd Party Products library section of the Fox Users Forum on CompuServe (GO FOXFORUM)

on MaxTech’s Internet web site maxlink.com.

Revision History

Due to the length of the revision history, we have moved it to a separate document, VMREVHST.DOC. Please consult it for a full revision history if you want to upgrade from a version older than that the ones whose revision history is contained in the header comments of X3FWMAIN.PRG

1992 Microsoft FoxPro Developer Conference	Converting Clipper Summer ’87 Applications to FoxPro�Page MFP-07�SYMBOL 45 \f "Symbol"��PAGE�38�	�SYMBOL 227 \f "Symbol"� 1992 Marc Schnapp and Tina Newton

Visual MaxFrame, version 2.0	 VM.DOC

�SYMBOL 227 \f "Symbol"� 1996 MaxTech, Inc.										 Page �PAGE�49�

