Visual MaxFrame Revision History

This section contains a revision history for versions of the framework starting with version 1.0. Consult this listing if you have obtained an updated version of the framework to see what retrofitting, if any, will be required to convert/upgrade your existing application source code.
A revision history for both Visual MaxFrame (“Level 1”) and Visual MaxFrame Professional (“Level 2”) framework files is included here because we currently have no formal documentation for Visual MaxFrame Professional files.
This section only contains revision history up to the last major revision. The revision history for version after that is contained in the header comments of X3FWMAIN.PRG.

Visual MaxFrame
Version 1.1 2/23/96
Modification: New oMenu method for menu installation
Added new X3FW.VCX/cusMenu.InstallMenu() to allow executing any passed .MPR menu.
No retrofitting required (see the following item)
Modification: Changed the way the initial menu is installed
Changed the way the initial menu is executed in oMenu:�	Changed X3FW.VCX/cusMenu.BeforeInstallMenu() to .BeforeInstallInitialMenu()�	Changed X3FW.VCX/cusMenu.AfterInstallMenu() to .AfterInstallInitialMenu()�	Changed X3FW.VCX/cusMenu.InstallMenu() to .InstallInitialMenu()
No retrofitting required unless you're currently using BeforeInstallMenu() or AfterInstallMenu()
Modification: Renamed a form class
Changed X3FW.VCX/frmModal to X3FW.VCX/frmNonDataDialog.
Retrofitting requires changing any ParentClass = "frmModal" to "frmNonDataDialog"
Enhancement: Improved the RemoteRefresh behavior
Improved action to update other extant forms on saving modified form data. Replaced X3FW.VCX/cusForms.RefreshSpecificForms() with .RefreshFormsOnUpdate()
No retrofitting required unless you've subclassed RefreshSpecificForms()
New feature: Application Timeout
Added timeout to the application
Retrofitting requires new xxSYSTEM.DBF/APPINFO fields:�	App_AppTimerInterval I(4) (default to 0)�	App_TimeoutSeconds I(4) (default to 0)�	App_TimeoutType C(1) (default to "N")
clear all
close all
open data xxxxx excl
alter table APPINFO add column App_AppTimerInterval I(4)
alter table APPINFO add column App_TimeoutSeconds I(4)
alter table APPINFO add column App_TimeoutType C(1)
clear all
close all
NOTE: If you're upgrading directly from version 1.00 to version 1.22 or higher, you can skip this retrofit.
Version 1.2 2/27/96
Modification: New PK generation behavior
Modified X3GENPK/generate PK behavior, X3FWDATA.PRG now requires a GENERATEPK the table name for the generate-PK table in each database. Also eliminated the third (optional tcGENPKTableName) parameter received by X3GENPK.PRG.
Retrofitting requires renaming existing ??GENPK tables to GENERATEPK, use of the new version of X3GENPK.PRG, elimination of the 3rd parameter sent to existing calls to X3GENPK(), and
clear all
close all
open data xxxxx excl
rename table xxGENPK to GENERATEPK
clear all
close all
Enhancement: improved the application cleanup process
Modified X3FW.VCX/ctrApp.Destroy() to improve the cleanup process when running in any Command Window mode (as oppposed to runtime). Changes made to the following methods of X3FW.VCX/ctrApp:�	Destroy()�	Init()�	SetupSets()�	ilRunTime (now a protected property)�	RunTime (new public method)
No retrofitting required.
Bug Fix: oFormInstance object was obscuring part of the upper left of forms
Modified X3FW.VCX/cusForms.DoForm() to fix a bug with the positioning of the oFormInstance object added to forms after instantiation. Caused a portion of the upper-left area of the form to be "dead".
No retrofitting required unless you've subclassed DoForm(), in which case add the WITH..ENDWITH code manipulating Height/Width/Top/Left properties.
Version 1.21 3/8/96
Modification: Added candidate key to USERS table
Added a candidate key tag USERS.Usr_LanID to the USERS table (done in X3FWDATA.PRG).
Retrofitting requires:
clear all
close all
open database xxxxx exclusive
use USERS exclusive
index on Usr_LanID tag Usr_LanID candidate for !deleted()
clear all
close all
Modification: Migrated 2 methods upward in the form class hierarchy
Added dummy methods GetMode() and BoundControlsInteractiveChange() to X3FW.VXC/frmData to prevent errors when using Level 2 bound controls on forms from X3FW.VCX/frmDataDialog.
No Retrofitting required.
Modification: New abstract form class
Added a new abstract form class X3FW.VCX/frmNonData, a subclass of frmBase. Renamed X3FW.VCX/frmNonDataDialog to X3FW.VCX/frmNonDataModal, and redefined as a subclass of X3FW.VCX/frmNonData. (required a change to an explicit :: call in frmLogin)
Retrofitting requires changing the ParentClass property (Class field in the .VCX) from "frmNonDataDialog" to "frmNonDataModal" if you created classes/forms subclassed directly from X3FW.VCX/frmNonDataDialog.
Modification: Renamed form class
Renamed X3FW.VCX/frmDataDialog to frmDataModal.
No retrofitting required unless you have subclasses/forms of frmDataDialog, in which case you need to change the ParentClass property (the Class field in the .VCX) to "frmDataModal".
New Feature: Splash screen
Added splash screen capabilities.
Retrofitting requires passing the new (optional) 8th lparameter to X3FWMAIN -- see the lParameters listing in X3FWMAIN.PRG and the new local procedure InstallSplashScreen in X3FWMAIN.PRG
Version 1.22 3/11/96
Enhancement: Create the LV_USERS local view
Added code to X3FWDATA.PRG to create the LV_USERS local view.
No retrofitting required. However, if you modify your application-specific USERS table, you'll have to apply those updates to the LV_USERS view, too.
Feature: Default the Form.Icon property
On instantiation, if a form's .Icon property is blank, default .Icon to the application icon (if any). Change made to X3FW.VCX/cusForms.DoForm().
No retrofitting required
Bug Fix: Restore Form.WindowState on Form.Show() after being minimized
On Show()ing (via a selection on the Window menu) after being minimized, forms weren't restoring to their previous WindowState. Change made to X3FW.VCX/frmBase.Activate(), Show(), Resize(), and the addition of new protected property .PreviousWindowState
No retrofitting required.
Bug Fix: Window menu item not updated properly when forms released if linked to a toolbar
When a form has a linked toolbar, the Window menu was not being updated properly when forms were released. Changes made toX�	3FW.VCX/cusForms.DoForm() �	X3FW.VCX/cusMenu.ReleaseWindowMenuItem()
No retrofitting required
Enhancement: Restructured xxSYSTEM.DBF/APPINFO table
Changed xxSYSTEM.DBF/APPINFO from a single-row table to a multi-row table to make it easier to maintain and add new application-specific rows. Changes made to�	X3FWDATA.PRG -- modify the creation/population of APPINFO�	X3FW.VCX/ctrApp -- modify the existing THIS.GetAppInfo() calls�	X3FW.VCX/ctrApp.GetAppInfo()�	X3FW.VCX/cusForms -- modify the existing oApp.GetAppInfo() calls�	X3FW.VCX/cusUser -- modify the existing oApp.GetAppInfo() calls�	X3FWCNVCHR.PRG -- new library routine to convert character strings, called by oApp.GetAppInfo()
Retrofitting requires converting any existing APPINFO table as follows and then adding rows to APPINFO corresponding to any added fields in the old APPINFO format:
clear all
close all
open data ?? exclusive
use APPINFO exclusive
scatter memvar memo
use
remove table APPINFO delete
create table ??SYSTEM name APPINFO ;
 (App_ItemPK C(20), ;
 App_ItemDataType C(1), ;
 App_ItemValue C(100),;
 App_ItemDescription M(4))
alter table APPINFO add primary key upper(App_ItemPK) tag App_ItemPK
=dbsetprop("APPINFO", "TABLE", "Comment", "Application-level information")
=dbsetprop("APPINFO.App_ItemPK", "FIELD", "Comment", ;
 "Application setup/configuration item (Primary Key)")
=dbsetprop("APPINFO.App_ItemDataType", "FIELD", "Comment", ;
 "Data type for App_Item (C,N,L,D,T)")
=dbsetprop("APPINFO.App_ItemValue", "FIELD", "Comment", "App_Item value")
=dbsetprop("APPINFO.App_ItemDescription","FIELD", "Comment", "Description of App_Item")
m.App_ItemPK = "DevModeExpr"
m.App_ItemDataType = "E"
m.App_ItemValue = [getenv("FPDEV")="ON"]
m.App_ItemDescription = space(0)
insert into APPINFO from memvar
m.App_ItemPK = "SetProcedure"
m.App_ItemDataType = "C"
m.App_ItemValue = m.App_SetProcedureFiles
insert into APPINFO from memvar
m.App_ItemPK = "SetClasslib"
m.App_ItemDataType = "C"
m.App_ItemValue = m.App_SetClasslibFiles
insert into APPINFO from memvar
m.App_ItemPK = "SetLibrary"
m.App_ItemDataType = "C"
m.App_ItemValue = m.App_SetLibraryFiles
insert into APPINFO from memvar
m.App_ItemPK = "SetPath"
m.App_ItemDataType = "C"
m.App_ItemValue = m.App_SetPath
insert into APPINFO from memvar
m.App_ItemPK = "Title"
m.App_ItemDataType = "C"
m.App_ItemValue = m.App_Title
insert into APPINFO from memvar
m.App_ItemPK = "IconFile"
m.App_ItemDataType = "C"
m.App_ItemValue = m.App_IconFile
insert into APPINFO from memvar
m.App_ItemPK = "ScreenWallpaperFile"
m.App_ItemDataType = "C"
m.App_ItemValue = m.App_ScreenWallpaperFile
insert into APPINFO from memvar
m.App_ItemPK = "UserLoginFormClass"
m.App_ItemDataType = "C"
m.App_ItemValue = m.App_UserLoginFormClass
insert into APPINFO from memvar
m.App_ItemPK = "DevToolbarClass"
m.App_ItemDataType = "C"
m.App_ItemValue = m.App_DevToolbarClass
insert into APPINFO from memvar
m.App_ItemPK = "DevToolbarPad"
m.App_ItemDataType = "C"
m.App_ItemValue = m.App_DevToolbarPadPrompt
insert into APPINFO from memvar
m.App_ItemPK = "LoginControl"
m.App_ItemDataType = "C"
m.App_ItemValue = m.App_LoginControl
insert into APPINFO from memvar
m.App_ItemPK = "AutoLoginUserID"
m.App_ItemDataType = "C"
m.App_ItemValue = m.App_AutoLoginUserID
insert into APPINFO from memvar
m.App_ItemPK = "AutoLoginPassword"
m.App_ItemDataType = "C"
m.App_ItemValue = m.App_AutoLoginPassword
insert into APPINFO from memvar
IF type("m.App_AppTimerInterval") = "N"
 m.App_ItemPK = "AppTimerInterval"
 m.App_ItemDataType = "N"
 m.App_ItemValue = alltrim(str(int(m.App_AppTimerInterval)))
 insert into APPINFO from memvar
ENDIF
IF type("m.App_TimeoutSeconds") = "C"
 m.App_ItemPK = "TimeoutSeconds"
 m.App_ItemDataType = "N"
 m.App_ItemValue = alltrim(str(int(m.App_TimeoutSeconds)))
 insert into APPINFO from memvar
ENDIF
IF type("m.App_TimeoutType") = "C"
 m.App_ItemPK = "TimeoutType"
 m.App_ItemDataType = "C"
 m.App_ItemValue = m.App_TimeoutType
 insert into APPINFO from memvar
ENDIF
clear all
close all
Version 1.3 5/7/96
Modification: Suppress the default FoxHead icon at startup
Added code at the beginning of X3FWMAIN.PRG to suppress the default FoxHead Icon until oApp installs any application-specific icon.
No retrofitting required.
Modification: Changed where Form.Icon is set
Changed the default installation of Form.Icon to any specified application .Icon installation from X3FW.VCX/cusForms.DoForm() to X3FW.VCX/frmBase.Init() including code to suppress the default FoxHead Icon if neither the form nor the application specify an Icon.
No retrofitting required.
Modification: Added flexibility to Page.Refresh()
Added an optional parameter to X3FW.VCX/pgfPageRefresh.Page2.Refresh() to allow using it to call generic Page.Refresh() in subclasses that add pages > Page2.
No retrofitting required.
New Feature: Wrapper .PRG for .VCX-based forms
Added new library routine X3WRPFRM.PRG which is simply a wrapper to make it easy to call modal .VCX-based forms and return the same value you would get if they were .SCX-based forms and you executed them via DO FORM .. TO <memvar>. Added one line of code to X3FW.VCX/frmBase.Unload()
No retrofitting required
New Feature: Report Destination dialog form class
Added new form class X3FW.VCX/frmReportDestination in the non-data-modal form hierarchy.
No retrofitting required.
Enhancement: Better support for bound controls
Added IF..ENDIF to X3FWCTRL.VCX/cboDropDownBound calls to THISFORM.BoundControlsInteractiveChange() to allow using subclasses that don't have a ControlSource set, and therefore won't send the form into "EDIT" mode. Once accomplished, the same logic/code added to:�	X3FWCTRL.VCX/chkBound�	X3FWCTRL.VCX/opgBound�	X3FWCTRL.VCX/txtBound
No retrofitting required.
Modification: Removed X3FWTOOL.VCX from Level1
No retrofitting required.
Enhancmenemt: Set Grid.Column.ControlSource in a method for grid classes
Added new method X3FW.VCX/grdBase.SetColumnControlSources() for use in creating grid classes bound to data (as opposed to grid classes bound to data at the .SCX/instance level). We've encountered a VFP infelicity that is solved by setting Grid.Column.ControlSource in a method rather than in the Properties Sheet. For more info, see the above new method.
No retrofitting required, but you may want to move explicit Properties Sheet ControlSource settings to this new method where appropriate.
Bug Fix: Grid.ActiveColumn=0 when the grid doesn’t have focus
Modified code in X3FW.VCX/cusForms.RealActiveControl() to bypass processing when a grid is the active control but it has no records in it, in which case .ActiveColumn = 0
No retrofitting required.
Modification: Changed the way runtime is determined
Removed X3FW.VCX/ctrApp.ilRuntime protected property and added the code that was missing from X3FW.VCX/ctrApp.Runtime(), which returns a logical value indicating whether the app is running via the runtime support library or from the Command Window.
No retrofitting required unless you had oApp.GetPProp("ilRunTime") calls, which must be changed to oApp.Runtime().
Enhancement: Better timer hierarchy
Added a level of abstraction in the timer hiearchy. Moved most of the behaviors of the former X3FW.VCX/tmrBase to the new subclass X3FW.VCX/tmrEatStackedEvents.
No retrofitting required unless you were using instances/subclasses of tmrBase, in which case you can get the identical behavior by redefining your instances/subclasses to inherit from the new X3FW.VCX/tmrEatStackedEvents class instead (which has been done to the tmrAppTimer contained in X3FW.VCX/ctrApp).
Enhancement: New tuInitialValue parameter behavior
Added logic to X3FW.VCX/frmData.Init() to go EOF() in THISFORM.icMainAlias if THISFORM.icInitialValue is a negative number.
No retrofitting required unless you added your own code to do so, in which case you can remove it and simply adjust the tuInitialValue parameter.
Modification: Moved When() code to GotFocus()
Moved the When() code to the GotFocus() for all the Text1 textboxes in columns of X3FW.VCX/grdBase.
No retrofitting required unless you had added other code to either the When() or the GotFocus() to the above, in your grdBase.
Bug Fix: Passed alias could be closed
X3FW.VCX/frmData.RemoteRefresh() executed the DBF() function when the passed alias could be closed, resulting in a crash
No retrofitting required.
Enhancement: Default SEEK() to use PK
Added code to X3FW.VCX/frmData.Init() so that if an initial value is set to a character string but no index tag is set, we'll at least try the SEEK() with any available Primary Key
No retrofitting required.
Enhancement: Better support for concatenated PK in USERS table
Added 2 properties to X3FW.VCX/cusUser: icPKSeekPrefix, icUsersTablePKTagName to make it easy to use oUser with a USERS table whose PK is comprised of a concatenation of fields. Both new properties are used in the revised oUser.LocateUserPK(), and icPKSeekPrefix is used in X3FW.VCX/frmLogin.CustomPasswordValid().
No retrofitting required, but if you have existing code that uses a concatenated PK in the USERS table, you might be able to simplify what you already have.
Enhancement: SET MARK OF BAR of the Window menu
Added code to SET MARK OF BAR on the Window menu to match the current active form. New X3FW.VCX/cusMenu methods: SetMarkOfBar(). Updated X3FW.VCX/cusMenu methods: AddWindowMenuItem(), DoesPopupExist(). Also updated X3FW/frmBase.Activate().
No retrofitting required
Enhancement: Post main view/alias buffer first
Added code to X3FW.VCX/frmData.UpdateBuffers() to post buffers for the main view/table alias before any other buffered data so that parent information is available for rules in child/related tables.
No retrofitting required.
Modification: Renamed SetFilterRelation() and split out new method
Renamed X3FW.VCX/frmData.SetFilterRelation() to SetFilter(). Also added a separate SetRelation() method.
No Retrofitting required unless you have existing forms that inherit from frmData and have custom SetFilterRelation() code.
Bug Fix: Toolbar remaining visible
Fixed bug that resulted in a linked toolbar remaining visible when the linked form is Release()d and there are other extant forms that are linked to the same toolbar and the next form in the Activation stack is not one linked to that toolbar. The fix added a line of code to X3FW.VCX/cusForms/DeleteInstance().
No retrofitting required.
Bug Fix: Missing ShellAdditionalInit() call
Added missing call in X3FWCTRL.VCX/tmrBase.Init() to THIS.ShellAdditionalInit().
No retrofitting required.
Bug Fix: Missing alias for EOF() call
Added missing alias to an EOF() call in X3FW.VCX/frmData.UpdateBuffers() that caused an "End of file encountered" error on ROLLBACK (in certain situations).
No retrofitting required
Bug Fix: Un-Protected X3FW.VCX/cusMenu.InstallMenu() method.
No retrofitting required
Enhancement: SKIP FOR condition
Added a parameter to X3FW.CusMenu.DefineBar() method to allow passing a SKIP FOR condition as a character string.
No retrofitting required unless you had code to do it manually and want to use this new parameter instead.
Enhancement: Add developer’s toolbar to the menu
Added code to X3FW.VCX/ctrApp.DevToolbarInstall() to add the Developer's Toolbar to the menu if it exists but isn't on the menu. Also un-Protected DevToolBarInstall() method.
No retrofitting required
Enhancment: Better path specs
Added (in X3FWDATA.PRG) a default APPINFO record for "SetPathProd" and changed the existing "SetPath" record to "SetPathDev". This allows more control over the SET PATH, and both records are checked in the updated X3FW.VCX/ctrApp.SetupPPCLP() method. Note that neither has any effect on SET PATH unless populated, in which case they OVERWRITE/REPLACE any existing SET PATH path.
Retrofitting requires changing your existing APPINFO.App_ItemPK="SetPath" to "SetPathDev" and adding a record for APPINFO.App_ItemPK="SetPathProd".
Enhancement: X3GENPK.PRG update
Modified X3GENPK.PRG to use the INDBC() function for faster checking for a valid TableName in the specified database. Added code to TABLEREVERT() the REPLACE if X3GENPK is unsuccessful. Added functionality so X3GENPK returns either numeric values (for Integer data-type PKs) OR character values (as in previous versions).
No retrofitting required
Bug fix: Improved pgfPageRefresh behavior
Added code to X3FWFRM.VCX/frmDEGridNav2Pages.pgfPageRefresh1.Page2.Refresh() to properly call THISFORM.ShellRequeryMainViewAlias() the first time any page >2 is Activated, rather than each time. This behavior was only noticeable in prior versions when using frmDEGridNav2Pages with more than 2 pages on the pageframe. zReadMe has been updated to accurately describe Page.Activate() and Page.Refresh() code that must be added to pages >2 added to the pageframe in instances/subclasses.
No retrofitting required unless you had
existing forms based on X3FWFRM.VCX/frmDEGridNav2Pages that had more than 2 pages in the pageframe
you had to add code to prevent a call to THISFORM.ShellRequeryMainViewAlias() each time a page was Activated the first time for each grid row when in edit mode
Bug fix: Removed case-sensitivity
Fixed the reference to "TOOLBAR" in X3FW.VCX/cusForms.DoForm() to be case-insensitive
No retrofitting required
Enhancement: Explicit SET DATABASE TO before TABLEUPDATE()
Added explicit SET DATABASE TO code before each TABLEUPDATE() in X3FW.VCX/frmData.UpdateBuffers() to remedy the occasional problem of VFP not being able to locate stored procedures in the corresponding database, usually as a result of code in the RI Builder-generated referential integrity code
No retrofitting required
Bug Fix: Set BackStyle = 0 Transparent for OptionButtons3-10 of X3FW.VCX/opgBase
No retrofitting required
Enhancement: New frmReportDestination behaviors
Added new behaviors to X3FW.VCX/frmReportDestination:
Ability to designate the initally-selected option, in case you want to default to "Printer"
Ability to pass a form title (caption)
No retrofitting required
Enhancement: Specify DockPosition of linked toolbars
Added support for specifying the DockPosition of any specified icLinkedToolbar for frmBase-derived forms.
X3FW.VCX/frmBase new property inLinkedToolbarInitialDockPosition for specifying the initial dock position. Defaults to docked at the top
X3FW.VCX/cusForms.DoForm() added code to Dock() any linked toolbar in the location indicated in inLinkedToolbarInitialDockPosition
No retrofitting required unless you subclassed to provide this functionality, in which case you might consider removing your stuff and use this feature instead
Bug fix: Linked toolbar improvements
Fixed the bug resulting in no "linked" toolbar when multiple instances of a form were instantiated, each linked to the same toolbar. All the "linked" toolbar logic was revised (simplified), involving the following:
X3FW.VCX/cusForms�	.DoForm()�	.DeleteInstance()�	.ToolbarCheckLinkedForm()
X3FW.VCX/cusFormInstance�	.Destroy()�	.Init()�	.icFormLinkedToolbar (new property)
No retrofitting required, unless you've already subclassed and modified the above to fix the problem
Enhancement: Easier subclassing of frmData.Init() features
Rearranged the code in X3FW.VCX/frmData.Init() to make it easier to subclass. Added 2 new methods to X3FW.VCX/frmData: �	SetDatabaseToMainAliasDBC()�	SetInitialMainAliasRecno()
No retrofitting required because the code is the same, just split out into separate methods.
Version 1.31 6/17/96
Bug Fix: OnAppTimerEvent() check
Added a check for whether the OnAppTimerEvent() method exists before calling it from X3FW.VCX/cusForms.AppTimerJustFired(), since toolbars in our hierarchy don't have such a method.
No retrofitting required
Modification: Cleaned up commented code in X3FWFRM.VCX/frmStandBy
No Retrofitting required
Bug Fix: Removed spurious line
Eliminated the spurious (but harmless) line�	lcClassOrSCX = lcClassOrSCX�in X3FW.VCX/cusForms.DoForm()
No retrofitting required
Enhancement: Coded the heretofore empty DoesBarNumberExist()method of X3FW.VCX
No retrofitting required
Bug Fix: Added an EXIT
Added an EXIT to the FOR..ENDFOR loop thru open tables in X3FW.VCX/frmData.RemoteRefresh() once THIS.Refresh() has been executed
No retrofitting required
Bug Fix: Removed the extraneous ">0" from the =TABLEREVERT() call in X3FW.VCX/frmData.RevertBuffers()
No retrofitting required
Enhancement: Modified the comments in X3FW.VCX/frmBase.QueryUnload
No retrofitting required
Bug Fix: No reset/remove of Window menu on timeout
When oApp.icTimeoutType="M", timing out to the menu didn't reset/remove the Window menu:�	X3FW.VCX/cusForms.TimeoutAllForms()�	X3FW.VCX/cusMenu.ReleaseWindowMenuItem()�	X3FW.VCX/cusMenu.ReleaseWindowMenu() new method
No retrofitting required
Enhancement: Updated comments
Updated the comments of X3FWFRM.VCX/frmDataEntry.BoundControlsInteractiveChange() and X3FWFRM.VCX/frmDataEntry.GetMode()
No retrofitting required
Bug Fix: Fixed the validity check
Corrected the check for "." in tcDatabaseName in X3FW.VCX/ctrApp.Init() before verifying that it is indeed a character string. In the process, split out the process of determining icMainDatabase and icApplicationPrefix into a new SetupMainDatabase() method, called from Init().
No retrofitting required
Enhancement: Split out methods
Split X3FW.VCX/ctrApp.SetupPCLP() into four separate public methods:�	SetPath()�	SetProcedure()�	SetClasslib()�	SetLibrary()
No retrofitting required unless you modified SetupPCLP() in subclasses, in which case you need to move your modifications to the appropriate one of the new methods
Enhancement: Better splash screen release
Made the action of releasing any splash screen more robust by explicitly identifying the splash screen via its Tag property:�	X3FWMAIN/InstallSplashScreen�	X3FW.VCX/ctrApp.Init()
No retrofitting required
New Feature: added linBase to X3FW.VCX
No retrofitting required unless you had created your own linBase with anything different from this one
New .VCX: X3FWPPOP.VCX
X3FWPPOP.VCX contains class definitions for objects that "Push/Pop" items. Objects are instantiated as local memvars that generally contain Init() code to save a value or attribute, and Destroy() code that resets the value/attribute to what it was on Init(). Objects are instantiated and destroyed within one method/procedure.
No retrofitting required
Modification: Reset record pointers
Added logic to our generic X3FW.frmData.RevertBuffers() code to reset the record pointer in each TABLEREVERT()ed work area.
No retrofitting required
Modification: Check for EOF() after deletion
Added logic to our generic X3FW.VCX/frmData.UpdateBuffers() code to check for TABLEUPDATE() leaving the record pointer EOF() in certain situations where records have been deleted.
No retrofitting required
Enhancement: Remove upper case force from User ID login textbox
Adjusted the behavior of the User ID textbox in X3FW.VCX/frmLogin to allow entry without forcing it to upper case, done in X3FW.VCX/frmLogin.txtID.Init()
No retrofitting required
Modification: Better parameter passing
Changed the way the parameter is sent to X3FW.VCX/ctrApp.SaveReset(), done in X3FW.VCX/ctrApp.Init() and Destroy().
No retrofitting required
Version 1.32 6/27/96
Enhancement: Better standalone form support
Added an IF..ENDIF to check for the existence of oForms to X3FW.VCX/frmBase so that form classes like X3FWFRM.VCX/frmStandBy (level 2) can be used standalone or outside the framework
No retrofitting required
Bug Fix: Standalone support
Added an IF..ENDIF to check for the existence of oForms to X3FW.VCX/frmBase.Deactivate() to prevent crashes when running forms standalone
No retrofitting required
Enhancement: Custom property for linked toolbar
Added a new property to X3FW.VCX/frmBase, ioLinkedToolbar that is an object reference to the linked toolbar specified in X3FW.VCX/frmBase.icLinkedToolbar. Makes it easy to send messages to the linked toolbar from the form: THISFORM.ioLinkedToolbar.Method()�	X3FW.VCX/frmBase�		ioLinkedToolbar -- new property�		Destroy() -- added code to set THIS.ioLinkedToolbar to .NULL.�	X3FW.VCX/cusForms�		DoForm() -- added code to set the linked form's ioLinkedToolbar property
No retrofitting required unless you've been managing this manually.
New feature: Better app-setup-failure information for the developer
Added logic to generate a more informative error message when a problem occurs in instantiating the application-level objects in X3FWMAIN. When oApp.InDevelopment(), the error message dialog includes the object.method() where the problem most likely occurred. The change required a new pcInstantiationError in X3FWMAIN.PRG and calls throughout the setup methods of the global application objects.
No retrofitting required
Bug Fix: No auto-login
If the "Auto-Login" feature was set in APPINFO and the alltrim(auto-login-UserID) was the same length as the USERS.USR_LANID field, the auto-login process didn't work because an {ENTER} keystroke was keyboarded after the User ID field on the frmLogin login form was already filled. The fix is in X3FW.VCX/cusUser.KeyboardStuffString()
No retrofitting required
Modification: Removed old code
Removed the THIS.SetAll("Format","K") in X3FW.VCX/frmBase.Init() -- I put this in a long time ago, but it should be handled in "base" control classes, as is done in the ones in X3FW.VCX
No retrofitting required.
Modification: Handling SelectedBackColor
Removed the 2 THIS.Setall() calls in X3FW.VCX/frmBase.Init(), replacing them with a call to a new SetAllSelectedBackColor() method that does the same thing. This allows greater flexibility in subclassing, etc., and prepares for a possible future enhancement where these 2 properties can be set under user/administrator control
No retrofitting required
Modification: Checks for valid Grid.RecordSource
Added IF..ENDIF protection where indicated in X3FW.VCX/grdBase to protect against attempting actions on a grid whose RecordSource has not been set
No retrofitting required
Version 1.33 7/2/96
New class: cusPushPopFormFont
X3FWPPOP.VCX/cusPushPopFormFont allows push/pop of the current font properties of the current _Screen.ActiveForm or an explicit passed form reference
No retrofitting required
Modification: Changed the way VFP native toolbars are saved/restored
Removed X3FW.VCX/ctrApp.SetupSaveToolbars() method, replaced it with X3FW.VCX/ctrApp.SaveRestoreVFPToolbars(). In ctrApp.Init(), replaced the call to SetupSaveToolbars with SaveRestoreVFPToolbars(). In ctrApp.Destroy(), replaced the explicit code with a call to SaveRestoreVFPToolbars(). Commented out the calls to the new SaveRestoreVFPToolbars() method, using new code in X3FWMAIN.PRG instead, so that any toolbars are hidden before installing the splash screen.
No retrofitting required unless you were doing something special or explicit with the old save/restore logic
Enhancement: Reset To Default the .Height, .FontName, .FontSize, .FontBold properties of all X3FW*.VCX classes (where appropriate)
No retrofitting required
Modification: Validate-current-active-control technique
Went back to the old way of validating the current active control before allowing a new form to be executed via a menu selection. Eliminates the window title flashing from active to inactive and back to active color. See X3FW.VCX/cusForms.ActiveControlValid()
No retrofitting required
Modification: Removed old/obsolete class
Removed X3FWLIBS.VCX/cusUpdateRevert -- this functionality was moved to frmData.UpdateBuffers() and frmData.RevertBuffers() in an earlier revision. I've removed this class library to prevent someone from mistakenly thinking it's a viable class, but for some time, updates have only been made to the frmData.XXXBuffers() methods.
No retrofitting required unless you've been making calls to oLib.oUpdateRevert(), in which case the fix is simple -- change the calls to THISFORM.UpdateBuffers() or THISFORM.RevertBuffers(). And don't forget: you can use X3TOOLS.VCX/frsTextSearch (if you have Level 2) to find all occurrences of "oUpdateRevert".
Version 1.34 7/11/96
Enhancement: Better _Screen manipulation at startup
Updated the way _Screen is manipulated at application startup. Which is .WindowState=2, maximized. But _Screen attributes are saved each time the user Exits, and those settings are used after each subsequent login:�X3FW.VCX/ctrApp: �	inScreenTop -- removed�	inScreenLeft -- removed�	inScreenHeight -- removed�	inScreenWidth -- removed�	SetupScreen() -- modified�	DevToolbarDestroy() -- new method�X3FW.VCX/cusUser: �	SaveUserCustomizableAttributesOnDestroy() -- modified�	AfterUserLogin() -- modified�X3FWDATA.PRG: Added 4 new fields to USERS table:�	Usr_ScreenTop�	Usr_ScreenLeft�	Usr_ScreenHeight�	Usr_ScreenWidth
Retrofitting requires adding the above 4 fields to the USERS table:
	clear all
	close all
	open data XX exclusive
	alter table USERS ;
	 add column Usr_ScreenTop I(4) ;
	 add column Usr_ScreenLeft I(4) ;
	 add column Usr_ScreenHeight I(4) ;
	 add column Usr_ScreenWidth I(4)
	clear all
	close all
Note that the first time you run your app subsequent to the above ALTER TABLE..ALTER COLUMN command, your _Screen may initially display in a tiny window in the upper left corner of the desktop. Just maximize it to get it back, and from then on the USERS table stuff will do its thing
Enhancement: EditBox.HideSelection
Added logic to X3FW.VCX/edtBase.GotFocus() and LostFocus() to set/reset the HideSelection property so that when the editbox has focus and you use the CTRL+F/Find... dialog, found text is highlighted as you would expect.
No retrofitting required
Enhancement: Linked toolbar enhancements
Revised the timing of when any specified Form.icLinkedToolbar toolbar is instantiated/made visible. Now it happens *before* the form to which the toolbar is linked is made visible, so when you fire up the first form that has a linked toolbar, things are much smoother-looking. Changes made to:�	X3FW.VCX/cusForms.CheckLinkedToolbar()�	X3FW.VCX/frmBase�		Activate()�		Show()�		ilInitialEntry -- new property�		SetupLinkedToolbar() -- new method
Revised how any specified Form.icLinkedToolbar is made invisible. Now there is a check to see if the form about to be made active is also linked to the same toolbar, in which case the toolbar is left alone. Makes for less vertical shifting if you have Form.inLinkedToolbarDockPosition anything but -1. Changes made to:�	X3FW.VCX/frmBase.Deactivate()�	X3FW.VCX/cusForms.ToolbarFormDeactivation() -- new method
Along the way I replaced an explicit SET CLASSLIB TO with a call to X3SETCLS.PRG in X3FW.VCX/cusForms.DoForm().
I HATE TOOLBARS <g>. I have several toolbar issues on my list of things to do; I can see where I'm likely going to add a cusToolbars/oToolbars toolbar manager...
No retrofitting required
Modification: Added some error-trapping to X3SETCLS.PRG
No retrofitting required
Modification: Default form property settings
I'm not sure when these got set the way they are now, but I changed 2 property settings for forms:�X3FW.VCX/frmBase�	MaxButton -- Reset to Default (.t.)�	MinButton -- Reset to Default (.t.)�X3FW.VCX/frmDataModal�	MaxButton = .F.�	MinButton = .F. �X3FW.VCX/frmNonDataModal�	MaxButton = .F. �	MinButton = .F. �X3FW.VCX/frmNonDataNoTitle�	MaxButton = .F., protected�	MinButton = .F., protected
While I was at it, I set the following to .F.:�X3FW.VCX/frmNonDataNoTitle�	BorderStyle, protected�	Closable, protected�	ControlBox, protected�	Movable, protected�X3FW.VCX/frmNonDataModal.WindowType, protected�X3FW.VCX/frmDataModal.WindowType, protected
No retrofitting required unless your existing subclasses are affected
Modification: Property removed
In coordination with a modification in Level 2, removed X3FW.VCX/frmBase.ioPicklistGrid custom property (this property was recently added in v1.32)
No retrofitting required
Bug Fix: Record pointer resetting on Delete
In some earlier version, additional X3FW.VCX/frmData.UpdateBuffers() code to reposition record pointers subsequent to END TRANSACTION/ROLLBACK adversely affected the record pointer positioning logic in X3FWCTRL.VCX/cmdDataDelete.Click(). In this modification:�X3FWCTRL.VCX/cmdDataDelete�	Click() -- modified the code and removed the custom .ilMoveToNextLogicalRecord property�X3FW.VCX/frmData.UpdateBuffers() -- added a check for EOF() after a successful END TRANSACTION
No retrofitting required
Modification: In making the above bug fix, made minor cleanup modifications to X3FW.VCX/frmData.UpdateBuffers()
No retrofitting required
Enhancement: New class X3FWPPOP.VCX/cusPushPopDatabase
No retrofitting required
Modification: Global X3FWPPOP.VCX
Added a SET CLASSLIB TO X3FWPPOP.VCX in X3FWMAIN.PRG as it's used all over the framework, allowing the elimination of the checks all over the place to see if it's installed. Also added it to X3FWDATA.PRG to be defaulted to the APPINFO table, automatically installed in oApp.SetClassLib(). Modified all class libraries that have a call to X3SETCLS("X3FWPPOP") and added SET CLASSLIB TO X3FWPPOP.VCX ADDITIVE to X3FW.VCX/frmBase.StandaloneSetup()
No retrofitting required
Modification: Modified the code in X3FW.VCX/frmData.OnTimeoutReached() to make use of the new CancelAction() method
No retrofitting required
New feature: Specify the lForce parameter for TABLEUPDATE()
Added logic to allow specifying the lForce parameter #2 value for the TABLEUPDATE()s in X3FW.VCX/frmData.UpdateBuffers(). Changes are in:�X3FW.VCX/ctrApp.ilForceTableUpdate -- new protected property�X3FW.VCX/frmData�	UpdateBuffers() -- determine the lForce parameter�	ilForceTableUpdate -- new property�X3FWCTRL.VCX/cmdDataSave.MessageOnFailure() -- add a CASE statement for TABLEUPDATE(.t.,.F.) failing due to update conflict
You can set the 2nd lForce TABLEUPDATE() parameter globally in your oApp subclass if you don't like the default .T. No matter what oApp.ilForceTableUpdate is set to, you can override it on a form-by-form basis via the frmData.ilForceTableUpdate property
No retrofitting required
Modification: Methods removed
Removed 2 methods from X3FW.VCX/frmData that were there because of using an old (pre 3.0b/PEMSTATUS()) technique to prevent Level 2 bound controls from crashing in the InteractiveChange() event method. Also removed the now-bogus reminder in X3FW.VCX/frmDataModal.zReadMe(). Level 2 contains the rest of this modification.
No retrofitting required
Version 1.35 7/29/96
Modification: Default property value
Migrated the default X3FW.VCX/pgfPageRefresh.icPageRefreshComparisonValueExpression from X3FWFRM.VCX/frmDEGridNav2Pages (Level 2 .VCX), updated the zReadMe in both .VCXs accordingly
No retrofitting required
New Feature: Setup for Level 2 features
Added methods to X3FW.VCX/frmBase in conjunction with Level 2 enhancements:�CheckRequiredFields -- returns an object reference to the first control whose .ilRequired=.T. but whose .Value is empty()�ProximityLabel -- returns an object reference to the label that is likely to be the prompt for the passed control�CustomSetFocus -- SetFocus() to the passed control, even if that control is on a non-showing page of a pageframe
No retrofitting required
New Feature: Object reference to the last previously-active form of those currently running
Added logic to track the form of those currently running that was last Active. Future enhancements will actually use this feature <g>�X3FW.VCX/cusForms�	inActiveFormCounter -- new (protected) property�	TrackLastActiveForm() -- new method to update inLastActiveFormID�	GetLastActiveForm() -- new method to return an object reference to the last active form�	DoForm() -- modified to call .TrackLastActiveForm()�	DeleteInstance() -- modified to call .ResetArray()�X3FW.VCX/frmBase.Activate() -- modified to call oForms.TrackLastActiveForm()
No retrofitting required
New Feature: Query a form regarding cursors without SET DATASESSION TO
Added method X3FW.VCX/frmData.GetCursorInfo() which allows an external object to query information about any cursor in the form without having to SET DATASESSION TO its private data session.
No retrofitting required
New Feature: Default initial population of forms
As promised above, I've put oForms.GetLastActiveForm() and frmData.GetCursorInfo() to work. In this feature, whenever a form inheriting from X3FW.VCX/frmData is instantiated, the default initial-record-pointer-of-THIS.icMainAlias behavior (no tuInitialValue parameter passed) is as follows
Query oForms.GetLastActiveForm() to see if the current form is being instantiated while other form(s) are active, returning a handle to the last Active form of those currently running
Query the GetCursorInfo("RECNO()",THIS.icMainAlias) of the last Active form to see if it has the table in THIS.icMainAlias open, and, if so, the RECNO() on which it's positioned
If #1 and #2 meet with success, position the record pointer in THIS.icMainAlias on the indicated record
For example, if focus is currently in the Invoices form and you select any of the Customers forms (from the menu), when the Customer form becomes visible, it is positioned to the CUSTOMERS record corresponding to the customer for the current Invoice form. And if focus is currently in the Invoices form and you select the Parts reference maintenance form (from the menu), when the Parts form becomes visible, it is positioned to the PARTS record corresponding to the Part Description of the current LineItems grid row.
X3FW.VCX/frmData�	DefaultInitialMainAliasRecno() -- new method to do the above�	SetInitialMainAliasRecno() -- modified to make the call to DefaultInitialMainAliasRecno()
Also, many of the MTDE*.SCX forms (Level 2 example application) were slightly modified to ensure that the record pointers of related tables are kept in synch with the data-entry view(s)
Further modifications will be necessary when I revise this logic for Client-Server/ODBC data. I'll probably still include this feature, it'll just mean populating the remote view...
No retrofitting required
Enhancement: Private data session SETs management
Changed the way SET commands scoped to private data sessions are executed. In previous versions, these SET commands were executed in frmData.Load(). However, Form.Load() isn't always early enough in the form-loading process, especially for SET TALK and SET DELETED, because the DataEnvironment loads before Form.Load(), so anything going on in Form.DataEnvironment.BeforeOpenTables() has to SET TALK OFF manually, as you've seen in previous versions of the MT*.SCX forms in our example app. Also, if SET DELETED isn't set to ON and the first/default record showing in the form is DELETED(), it isn't removed prior to form visibility. So anyway, in this revision, there is a new X3FW.VCX/frmData.PrivateDataSessionSETs() class that instantiates an object that SETs the desired SET commands to their non-VFP defaults. This method can be called from either Form.DataEnvironment.BeforeOpenTables() or Form.Load(), and there is a default call in X3FW.VCX/frmData.Load().
The net effect is that anything you did before works the same now, it's just that the code is in different places for more flexibility. And now you can put a call to THISFORM.PrivateDataSessionSETs() in your Form.DataEnvironment.BeforeOpenTables() as I've done in the MTDE*.SCX forms (Level 2 example application) in this revision.
X3FW.VCX/frmBase�	StandAloneSetup() -- modified�	Load() -- modified�X3FW.VCX/frmData�	Load() -- modified�	PrivateDataSessionSETs() -- new method�X3FW.VCX/cusForms.icPDSSetsClassName -- new (protected) property�X3FW.VCX/cusPrivateDataSessionSETs -- new class
No retrofitting required
Enhancement: Split the APPINFO table into 2 tables
For the current APPINFO contained table:
got rid of the PK index tag
renamed the App_ItemPK field
converted the memo field to a C(254) field
deleted all records that have been moved to the xxCONFIG.DBF
Added a new xxCONFIG.DBF free table. The reasoning is that a number of items we used to keep in APPINFO are not intended to be client-configurable/maintainable. By separating them out into a separate free table, this table can be Included in the Project and built into the .EXE, for added security. This new table has essentially the same structure as APPINFO, and the public interface to the information now contained in 2 separate tables hasn't changed -- you still use oApp.GetAppInfo(). Here are the changes:�X3FWDATA.PRG -- new logic to build the new table�X3FW.VCX/ctrApp�	SetupAppInfoTable() -- additional logic to also open xxCONFIG.DBF�	GetAppInfo() -- additional logic to check both tables for the desired info�	icAppInfoTableName -- deleted; I thought I did this a while ago...
Why delete the PK and memo field from APPINFO? To reduce the file handle overhead. We were consuming 3 handles, and I didn't want to consume another 3. So I modified things to now consume only 2, one for each table. That meant changing from a SEEK() to a LOCATE in oApp.GetAppInfo(), but since neither APPINFO nor APPCONFIG will ever have a significant number of records, the slowdown in negligible when you figure the calls are one at a time.
Retrofitting requires modifying your existing APPINFO table and creating an APPCONFIG free table. You can name the filename for the APPCONFIG table anything you want, that .DBF filename just has to be registered in the "FreeConfigTable" record in APPINFO. I've included below a program I wrote to update the APPINFO table in the MT example application (Level 2) to the new formats. If you haven't added any records/items of your own, all you have to do is change the name of your database and the refereneces to MTCONFIG.DBF. If you have added your own records/items, you'll have to decide which table they belong in and take the appropriate action. And if you have database/table management/creation routines, they may need updating, too.
clear all
close all
set exclusive on
set talk off
set deleted off
set safety off
create table MTCONFIG.DBF ;
 (Ap_Item C(20), ;
 Ap_ItemDTp C(1), ;
 Ap_ItemVal C(100),;
 Ap_ItemDsc C(254))
open data mt
use appinfo in 0
select APPINFO
alter table APPINFO drop primary key
alter table APPINFO alter column App_ItemDescription C(254)
alter table APPINFO rename column App_ItemPK to App_Item
SCAN
 IF inlist(upper(alltrim(App_Item)),"SETPATHPROD","TIMEOUTSECONDS","APPTIMERINTERVAL")
 ELSE
 m.Ap_Item = App_Item
 m.Ap_ItemDTp = App_ItemDataType
 m.Ap_ItemVal = App_ItemValue
 m.Ap_ItemDsc = App_ItemDescription
 insert into MTCONFIG from memvar
 delete
 ENDIF
ENDSCAN
pack
insert into APPINFO (App_Item, App_ItemDataType, App_ItemValue, App_ItemDescription) ;
 values ("FreeConfigTable", "C", "MTCONFIG.DBF", "Filename of the APPCONFIG free table containing app information")
clear all
close all
return
New Feature: Selectable QueryUnload() behaviors
Added a custom protected .inQueryUnloadBehavior property to X3FW.VCX/cusForms, controlling the default data-entry form QueryUnload behavior. In addition to the new property, this required a slight code change in X3FW.VCX/cusForms.ReleaseAllForms() to handle ON SHUTDOWN/App Exit properly. The 3 available QueryUnload behaviors are implemented in Level 2, X3FWFRM.VCX/frmDataEntry.QueryUnload()
No retrofitting required.
Modification: Unconditional form refresh
Previously, there was a THIS.Refresh() in X3FW.VCX/frmData.Init(), but it was inside an IF..ENDIF and only executed if !empty(filter(THIS.icMainAlias). I removed the IF..ENDIF because there are a variety of situations that require updating the form contents before it becomes visible.
No retrofitting required
Modification: No “?” icon use
According to The Windows Interface Guidelines for Software Design, the "?" icon is no longer recommended for use in =MESSAGEBOX() dialogs. X3WINMSG.PRG contains an alert to that effect.
No retrofitting required
Modification: No Form.Icon for secondary windows
Split out the X3FW.VCX/frmBase.Init() code that sets THIS.Icon to a new SetIcon() method to make it easier to subclass this behavior. In accordance with the recommendation in The Windows Interface Guidelines for Software Design, set THIS.Icon = space(0) in the .SetIcon() method of the following X3FW.VCX classes:�	frmDataModal�	frmNonDataModal�	frmNonDataNoTitle
No retrofitting required
Enhancement: Better single-instance form handling
The Windows Interface Guidelines for Software Design recommend that if a form called via a menu selection is already running and is not allowed in multiple instances, selecting it from the menu should just activate that form. As happens in Word, for example, when you open a document and then re-select it from the File menu, down in the most-recently-selected-files list. So I've modified the framework to provide this behavior, instead of disabling menu options that call forms not allowed in multiple instances. See Level 2 revision history for modifications made to the example MT application (Level 2) to take advantage of this new behavior. Changes:
X3FW.VCX/frmBase.ilAllowMultipleInstances -- new property specifying if multiple-instances are allowed, defaults to .F.�X3FW.VCX/cusForms.DoForm() -- added code to check whether the requested form to run is already running, and if so an multiple instances are not allowed, just active the already-running form
No retrofitting required unless you want to remove SKIP FOR code in menus that disable form selections that are now handled this way.
Enhancement: Better SKIP FOR handling
Added a tcClauses parameter to X3FW.VCX/cusMenu.DefinePopup() and replaced the existing X3FW.VCX/cusMenu.DefineBar() tcSkipForClause parameter with a tcClauses parameter that handles all the optional clauses.
No retrofitting required for the DefinePopup() modification, but any existing calls to oMenu.DefineBar() that specify the optional 5th tcSkipForClause parameter will have to be modified to include the "SKIP FOR " text in addition to the SKIP FOR condition.
New Feature: Added a Cascade option to the Window menu:
X3FW.cusMenu�	AddWindowMenuItem() -- modified�	ReleaseWindowMenuItem() -- modified�	UpdateWindowMenuItem() -- modified�	inWindowMenuOffset -- new protected property�X3FW.cusForms.Cascade() -- new method
No retrofitting required
Modification: Easier subclassing of containers
This is 2 enhancements in one, both to accomplish the same thing: simplify subclassing containers. The modifications are to X3FW.VCX/pgfPageRefresh and X3FW.VCX/grdBase, moving as much of the common page/column-header code to the pageframe/grid container level. Manual callbacks when augmenting common method code because the callback is at the container level, not the member level.
X3FW.VCX/pgfPageRefresh�	CommonPageActivate() -- new method�	CommonPageRefresh() -- new method�	Page1.Activate() -- modified�	Page1.Refresh() -- modified�	Page2.Activate() -- modified�	Page2.Refresh() -- modified
Retrofitting requires modifying existing Page.Activate() and Page.Refresh() code as per the instructions in zReadMe(). If you have any subclasses/instances (if you have Level 2 of this framework, see X3FWFRM.VCX/frmDEGridNav2Pages and MTDECUS1.SCX), you will probably want to move any common code to the appropriate new method. If you have subclasses/instances that have >2 Pages, you'll want to replace the default Page.Activate() and Page.Refresh() code as per the revised instructions in pgfPageRefresh.zReadMe().
Now for grids. Using the same idea:
X3FW.VCX.grdBase�	CommonColumnControlGotFocus() -- new method to contain GotFocus() code shared/needed by all column.controls�	ColumnX.Text1.GotFocus() -- simply call THIS.PARENT.PARENT.CommonColumnControlGotFocus()
X3FW.VCX�	txtBase.GotFocus() -- modified to call THIS...CommonColumnControlGotFocus() if there is one� cboBase.GotFocus() -- ditto�	chkBase.GotFocus() -- ditto�	cmdBase.GotFocus() -- ditto�	edtBase.GotFocus() -- ditto�	lstBase.GotFocus() -- ditto�	olbBase.GotFocus() -- ditto�	spnBase.GotFocus() -- ditto�X3FW.VCX/opgBase.CommonOptGotFocus() -- new method to contain GotFocus() code shared/needed by all contained OptionButtons�		.OptionX.GotFocus() -- code added to call THIS.PARENT.CommonOptGotFocus()�		.When() -- added code to call THIS.PARENT.PARENT.CommonColumnControlGotFocus()
No retrofitting required, this modification simply makes the above controls "aware" of the need to call THIS.PARENT.PARENT.CommonColumnControlGotFocus() if they're in a grid inheriting from X3FW.VCX/grdBase
Modification: DBCS support
Replaced string manipulation functions with their double-byte-character set equivalents, throughout the entire framework (pretty much all files: classes, programs, tools, builders...):�	AT() --> AT_C()�	CHRTRAN() --> CHRTRANC()�	LEFT() --> LEFTC()�	LEN() --> LENC()�	RAT() --> RATC()�	RIGHT() --> RIGHTC()�	SUBSTR() --> SUBSTRC()
And I'll be trying to develop the new habit of using the "C" versions of these functions exclusively from now on
No retrofitting required
Bug Fix: Duplicate PK generation
X3GENPK.PRG allowed duplicate PKs to be generated in some situations. The bug fix changes the 2nd TABLEUPDATE() parameter and adds a missing TABLEREVERT().
No retrofitting required
Enhancement: Complete set of sandwich methods
Added the following Before../After.. methods so that Before/After custom methods come in matched pairs:�X3FW.VCX/ctrApp�	BeforeInstallUser()�	BeforeInstallFormsMgr()�	BeforeInstallReportsMgr()�	BeforeInstallMenuMgr()
And renamed the following methods:�X3FW.VCX/ctrApp�	AfterInstallFormsHandler() --> AfterInstallFormsMgr()�	AfterInstallReports() --> AfterInstallReportsMgr()�	AfterInstallMenu() --> AfterInstallMenuMgr()
Retrofitting requires saving any code you've got in the renamed methods in subclasses and pasting it into the new methods once you've installed this version.
New Feature: Object reference to the first control in a container
X3FW.VCX/frmBase.GetFirstControl() is a new method that returns an object reference to the first control (in tab order) for the passed container.
No retrofitting required
Modification: Improved the code in X3FW.VCX/cusForms.HowManyInstantiated()
No retrofitting required
Enhancement: Win95 interface standard
Gave all visual classes a facelift to conform with Win95 interface standards (although who knows what I've missed -- I hate the FontBold=.F. standard...). This mod is pretty far-reaching, no need to itemize all the stuff that's changed because everything with a visible presence and having Font properties changed here.
The philosophy for this framework is that the interface will be Win95-style by default. If you want the Win31 style (VFP3 default), you'll have to manage that yourself, although that wouldn't be too difficult, thanks to inheritance. Win95-style interfaces look OK in 16-bit Windows, but Win31-style interfaces look terrible in 32-bit Windows.
Along the way, I made the following other related modifications: �X3FW.VCX�chkBase.AutoSize = .T.�lblBase.AutoSize = .T.
Retrofitting requires visiting all your subclasses and .SCX-based forms to do some touching-up of the aesthetics. Hint: an easy way to find out if you've got some controls lurking out there that have an explicit .Height (or .FontSize) set that you'd like to Reset to Default is to open the .VCX/.SCX in the Class Browser, select View Class Code and do a CTRL+F text search on ".Height" to find only those objects that have an explicit .Height set at that level.
New Feature: New commandbutton class
Added a new commandbutton class, X3FW.VCX/cmdToolbar, sized according to The Windows Interface Guidelines for Software Design/Microsoft Press, 22 pixels high by 24 pixels wide.
No retrofitting required
New Feature(s): Hooks and 3rd party product integration
(deep breath) This one is several items rolled into one. In this revision, I've added the hook pattern as I learned it from Steven Black. This feature starts off by adding an ioHook property and a SetHook() method to all X3FW.VCX/xxxBase classes�	ioHook -- new property�	SetHook() -- new method (for now SetHook() calls X3SETHOK.PRG so there's only one set of code)
Next, I've added 2 new classes to X3FWLIBS.VCX�cusLibraries -- superclass for all X3FWLIBS.VCX classes -- see zReadMe�cusDBCSvc -- class providing database/table services
X3FWLIBS.VCX/cusDBCSvc puts ioHook to work in each of its methods to allow hooking in your own object(s) or a 3rd party tool like Stonefield Database Toolkit (SDT). Some of the methods have working code, but several don't, and are meant to be subclassed or "hooked" to provide the working code of your choice.
Finally, I've put this new stuff to work in the following 2 methods:�X3FW.VCX/ctrApp�	SetupTables() -- modified to call methods in oLib.oDBCSvc�	ReindexTables() -- new method also calling oLib.oDBCSvc
I've updated X3FWMAIN.MNX to include a Re-Index option that calls the new oApp.ReindexTables() method. Note that until X3FWLIB.VCX/cusDBCSvc is subclassed/hoooked, nothing actually happens in oApp.ReindexTables(). But, for example, if you have SDT, you can easily hook oMeta.oSDTMgr into oLib.oDBCSvc.ioHook. And just how will you instantiate 3rd-party products like INTL and SDT? I've added �X3FW.VCX/ctrApp�	SetupExternalTools()�	CleanupExternalTools()�methods to provide a place to do so, although you have other options, too. See SetupExternalTools() and X3FWLIBS.VCX/cusDBCSvc.zReadMe()for some ideas. Please beware that this is my first shot at hooking to 3rd party products, and I have some ideas for enhancement that I'll implement in future revisions.
If you have Level2 of this framework, see the Level 2 revision history for information on hooking in SDT in the example MT application.
Near future revisions include hooking the framework to INTL's message services, and a mechanism for making it easier to hook 3rd-party tools based on classes into the framework.
No retrofitting required
Enhancement: Replace System menu pad with Tools menu pad
Replaced the "\<System" menu pad in X3FWMAIN.MNX menu template with a "\<Tools" menu pad. Added an "Options..." option and the afore-mentioned "Re-Index All Data" bar. Updated X3FWDATA.PRG to default installation of any specified developer's toolbar to the Tools menu.
Retrofitting requires doing the same to any existing menus, remember to update the APPCONFIG table item designating the _MSYSMENU pad to which to install the developer's toolbar:
USE xxCONFIG alias APPCONFIG
REPLACE APPCONFIG.Ap_ItemVal WITH "Tools" ;
 FOR APPCONFIG.Ap_Item = "DevToolbarPad"
New Feature: New method
Added X3FW.VCX/ctrApp.ForceShutdown() to force a shutdown/application termination. It's called in the new X3FW.VCX/ctrApp.ReindexTables() method.
No retrofitting required
Enhancement: Updated X3FWMAIN.MNX, Help menu pad
No retrofitting required
Version 1.4 8/19/96
Bug Fix: Added a missing =TABLEREVERT() to X3FW.VCX/cusUser.SaveCustomizableAttributesOnDestroy()
No retrofitting required
New Feature: Added a Close All option to the Window menu
X3FW.VCX/cusMenu.AddWindowMenuItem()�X3FW.VCX/frmBase.Activate()�X3FW.VCX/cusForms.ReleaseAllForms()
No retrofitting required
Bug Fix: The new (v1.35) X3FWLIBS.VCX/cusDBCSvc.OpenTable() method lacked code to SELECT the just-opened (free) table by its ALIAS, if one was specified
No retrofitting required
Bug Fix: The _Screen.Height setting subsequent to a successful user login was off by 1 pixel.
No retrofitting required
Bug Fix: Window menu left up inadvertently
Added code to X3FW.VCX/cusForms.ResetArray() to explicitly release the Window menu because until we have an oToolbars toolbar manager, this scenario leaves the (bogus) Window menu up:
Only extant form has a linked toolbar and the form is closed via the <OK> command button
No retrofitting required
Bug Fix: Keyboard setup
Removed the ON KEY LABEL CTRL+END * from X3FW.VCX/ctrApp.SetupKeyboard(). It was preventing the use of CTRL+END in editboxes.
No retrofitting required
New Feature: Add/Update record in APPINFO
In anticipation of future enhancements, added method X3FW.VCX/ctrApp.SetAppInfo() for adding/updating a record in APPINFO. This required enhancing X3CNVCHR.PRG to provide for 2-way string conversion
No retrofitting required
New Feature: icMainAlias property handling
frmData.icMainAlias is a required property. In this revision, if THIS.icMainAlias is left empty() and:�1- the form has a DataEnvironment�2- !empty(THIS.DataEnvironment.InitialSelectedAlias)�then frmData.Load() stores THIS.DataEnvironment.InitialSelectedAlias to THIS.icMainAlias
No retrofitting required
Bug Fix: SET DATABASE TO accommodation
Thanks to what I consider a VFP bug, had to modify the code in X3FWLIBS.VCX/cusDBCSvcs.OpenData() to process the tcDBC parameter differently. If you pass the tcDBC parameter with the ".DBC" extension and if tcDBC is located on a different directory than the current directory, VFP doesn't like the SET DATABASE TO (tcDBC).
No retrofitting required
Bug Fix: Proper tracking of the current grid column for generic validation
Up until now, the code in X3FW.VCX/cusForms.RealActiveControl() only worked correctly for grid column controls if the grid columns hadn't been moved by the user (or programmatically). In this fix, new code checks for the current Grid.Columns[] object with respect to the current column order.
No retrofitting required
Enhancement: Default naming convention
In anticipation of implementing the "Develop locally, deploy remotely" philosophy, our standard for naming views changed from LV_ (local) and RV_ (remote) to V_ for either type of view. Changes made to the X3FWDATA.PRG creation of the local view of the USERS table.
No retrofitting is required unless you run X3FWDATA.PRG subsequent to initial development of your app, in which case you'll want to update your LV_USERS view(s) and anywhere you used "LV_USERS" in existing code. Use X3TOOLS.VCX/frsTextSearch (included in Visual MaxFrame Professional) to hunt down any “LV_USERS" references you need to update. It is not required to update any existing production apps.
Enhancement: Setting expression-based properties in class definitions
Added a .SetExprProps() method to all X3FW.VCX/xxxBase classes. See the header comments in any one of them for an explanation. In the case of the InputMask, I've modified X3BLDTXT.SCX (textbox builder) to write expression-based InputMasks to SetExprProps().
No retrofitting required, but you're likely to be able to put .SetExprProps() to work in application-level subclasses to set expression-based properties.
Enhancement: Better cascade
Improved the Cascade feature, selected from the Window menu. I neglected to put in the code to reset the offset if there are more extant forms than fit vertically on the screen. Now if you have enough forms to more than fill the screen on selecting Cascade, they cascade down to fill the screen and then shift over and start again, etc.�X3FW.VCX/cusForms.Cascade()
No retrofitting required
Enhancement: Improved page-refresh strategy
After struggling with this one several times, I finally figured out a way to make the pgfPageRefresh behavior work for pages >2 without having to cut-and-paste Page.Activate() and Page.Refresh() code as in previous versions. The new X3FW.VCX/txtPageRefresh class provides an object that X3FW.VCX/pgfPageRefresh.Init() AddObject()s to each page (automating the cutting-and-pasting...), where the UIEnable and Refresh methods of the textbox make the appropriate calls to the CommonPage..() methods added in a previous version.�X3FW.VCX/pgfPageRefresh.Init() -- modified to add the txtPageRefresh object to each page�X3FW.VCX/pgfPageRefresh.zReadMe() -- eliminated the cut-and-paste-to-Pages>2 step�X3FW.VCX/txtPageRefresh -- new class
Retrofitting requires removing the following code in subclasses/instances that use pgfPageRefresh:
PageX.Activate code:�THIS.PARENT.PARENT.CommonPageActivate()
PageX.Refresh code: �THIS.PARENT.PARENT.CommonPageActivate()
If the above is the only code you have in those methods, you can simply Reset To Default.
New Feature: Track VFP version
In anticipation of the release of VFP5, X3FW.VCX/ctrApp now comes a with new .inVFPVersion protected property, which, when queried via oApp.GetPProp("inVFPVersion"), returns 3 or 5, indicating the running version of VFP. This allows bracketing of code to be version-specific. Also added an inVFPVersion property at the form level. The actual determination is made by calling X3GETVER.PRG, which is now a required file.�X3FW.VCX/ctrApp.inVFPVersion -- new protected property�X3FW.VCX/frmBase.inVFPVersion -- new protected property
No retrofitting required
Enhancement:
Added a Usr_Rights C(1) field to the USERS table, indicating a basic rights level for each user:�"S"upervisor�"G"lobal read/write�"R"ead-Only�While you are likely to add other fields to your application-specific USERS table, we are using this attribute to drive VM/VMP features based on these three possibilities. For most applications, this level of "security designations" is sufficient. To extend security on a per-application basis, we recommend using a supplementary "RIGHTS" table. For example, within the general "G"lobal rights designation, you may get pretty specific, down to a form/control level, as far as what can be seen or updated. Read on for how we've put Usr_Rights to work in a default user-security implementation in the framework.
Retrofitting requires adding the Usr_Rights column to your USERS table. X3FWDATA.PRG includes this enhancement, so if running X3FWDATA is how you generate your "system" tables, you can simply run it now. If not, the retrofit is pretty simple:
�clear all�close all�set exclusive on�open data xx �alter table USERS add column Usr_Rights C(1)�use USERS�replace all Usr_Rights with "G" �* replace Usr_Rights with "S" where appropriate�* replace Usr_Rights with "R" where appropriate�clear all�close all
Once the above is done, be sure to update your V_USERS local view of the USERS table so it's in synch. If you have Visual MaxFrame Professional (VMP), see the revision history notes for VMP for information regarding other retrofitting changes.
Modification: Developer’s toolbar instantiation
Moved the code that instantiates any Developer's Toolbar from X3FW.VCX/ctrApp.AfterInstallMenuMgr() to X3FW.VCX/ctrApp.BeforeReadEvents()
No retrofitting required unless you've subclassed specific code involving either of these 2 methods.
Bug Fix: Fixed a bug in X3FW.VCX/cusUser.SaveCustomizableAttributesOnDestroy() that resulted in saving the current customizable attributes to the wrong USERS record
No retrofitting required
Enhancement: cboBase functionalities based on RowSourceType
Added PEMs to X3FW.VCX/cboBase, following our philosophy of keeping the total number of (high-level) classes/subclasses to an absolute minimum. cboBase now has built-in multiple-functionality based on .RowSourceType. Read the zReadMe for the details.
No retrofitting required unless you had subclasses of X3FW.VCX/cboBase that have code/RowSource set that conflicts with these modifications.
Modification: Removed txtBase code
Removed the X3FW.VCX/txtBase.Valid() code that auto-stripped leading spaces from all textboxes bound to character data. I decided it wasn't a global-enough behavior, as it causes problems with fields like SSN, ZipCode, Phone#, Fax#, if the hyphens are contained in the InputMask.
No retrofitting required
Modification: Eliminated lblBound class
Eliminated X3FW.VCX/lblBound, migrating and modifying its features to X3FW.VCX/lblBase, which has a new BoundCaption(), called from lblBase.Refresh(), which returns a string used to update the Caption.
Retrofitting requires choosing one of the following. Note that in either option, you have work to do BEFORE you overwrite your existing X*.VCXs with this new version.
Option A: Easiest, but departs from the framework�==
1- In each .VCX where you have a subclass of X3FW.VCX/lblBound, create a lblBound there with all the X3FW.VCX/lblBound-specific PEMs you've already been using. Leave this old-style lblBound there so everything you currently have works the way it used to, but subclass directly from X3FW.VCX/lblBase for "Refreshable" labels from now on. Do this BEFORE you upgrade to this new version!
2- Copy your existing lblXXBound class to a junk.vcx.
3- Redefine it to inherit from X3FW.VCX/lblBase.
4- Add back the stuff it no longer inherits from the X3FW.VCX/lblBound:
 a) add a custom icAliasPlusFieldName property, set to =SPACE(0) in the Properties Sheet
 b) add a custom SetProperties() method with the following X3FW.VCX/lblBound code:
* Shell method to allow easy subclassing of properties.
* For example:
*
* THIS.icAliasPlusFieldName = ;
* "alltrim(CUSTOMERS.Cus_Name)"
*
 c) add the following X3FW.VCX/lblBound code to the Init() method:
IF lblBase::Init()
 ELSE
 return .f.
ENDIF
THIS.SetProperties()
 d) add the following X3FW.VCX/lblBound code to the Refresh() method:
*
* Default behavior, easily subclassed
* to your particular needs
*
IF !isnull(THIS.icAliasPlusFieldName) ;
 AND type("THIS.icAliasPlusFieldName") = "C" ;
 AND !empty(THIS.icAliasPlusFieldName)
 THIS.Caption = eval(THIS.icAliasPlusFieldName)
ENDIF
 e) add the following comments to the zReadMe() method:
		text
		NOTE: This class is a hybrid of the old
		 X3FW.VCX/lblBound and the new X3FW.VCX/lblBase.
		 It's like this for backward compatibility --
		 otherwise we'd have had to revise all the
		 subclasses/instances based on this class.
		
		 From new "refreshable" label classes, use
		 lblTMDefault instead.
		endtext
5- Upgrade to this new version 1.36 of the framework, including overwriting your existing X3FW.VCX. Add the following comments to your lblXXBound class modified in Step #4 above:
		*
		* this comment serves like NODEFAULT to prevent
		* anything from taking place here. We don't use
		* this feature in this class, which is here for
		* backward compatibility
		*
		* Since we've got Refresh()-specific code here,
		* this method won't ever get called, but just
		* in case...
		*

Option B: Easier, but departs from the framework
==
1- Create a .VCX to hold the now-obsolete lblBound class. We'll call this class library X3FWOBS.VCX.
2- Copy X3FW.VCX/lblBound to X3FWOBX.VCX (leave it in X3FW.VCX for now)
3- Use the Class Browser to ReDefine any existing classes you've created that are subclassed from X3FW.VCX/lblBound to now inherit from your new X3FWOBS.VCX/lblBound.
4- If you follow the safe practice of never creating instances directly from the VM, you're done. If not, you'll have to check your .VCXs and .SCXs for labels inherting directly from X3FW.VCX/lblBound:
use <MySCXorVCX>
brow for upper(class) = "LBLBOUND" and "X3FW.VCX"$upper(ClassLoc)
* replace ClassLoc field with <X3FWOBS.VCX>
5- Upgrade to this new version 1.36 of the framework, including overwriting your existing X3FW.VCX
6- Someday when you have time, bring your X3FWOBS.VCX/lblBound-derived subclasses back into the VM (see Option C below).

Option C: Harder, but remains within the framework (I've done this with 3 apps, it's not that difficult)
==
1- Identify everywhere in your existing projects based VM/VMP where you have code in the SetProperties() method of an lblBound subclass. This is easily accomplished by using X3TOOLS.VCX/frsTextSearch to find each reference to "SetProperties". Once you have identified any existing SetProperties() method code, copy that code somewhere for safekeeping.
2- Identify everywhere in your existing projects based on VM/VMP where you have text in the .icAliasPlusFieldName property of an lblBound subclass. This is easily accomplished by using X3TOOLS.VCX/frsTextSearch (included in Visual MaxFrame Professional) to find each reference to "icAliasPlusFieldName". Once you have identified any existing icAliasPlusFieldName settings, copy them somewhere for safekeeping.
3- Upgrade to this new version 1.36 of the framework
4- WITHOUT USING THE FORM/CLASS DESIGNERS, revisit your subclasses/instances that inherit from the old X3FW.VCX/lblBound hierarchy.
 a) reset the parent of those that inherit from lblBound:
use <MySCXorVCX>
browse for upper(Class) = "LBLBOUND" and "X3FW.VCX"$upper(ClassLoc)
* replace Class with "lblBase"
 b) reset the parent for any others you might have created...
5- Revisit those subclasses/instances you tracked in Steps #1 and #2 above. The new architecture for lblBase does't use an icAliasPlusFieldName property, but rather returns the string created in the new custom BoundCaption() method. Evaluate your existing combination of icAliasPlusFieldName/SetProperties() to put the correct method code in BoundCaption(). For an example, see MTDEINVL.SCX/lblInv_Total.
 6- You should have at least one class you can now remove from its .VCX, a subclass of X3FW.VCX/lblBound. (I removed MTFW.VCX/lblMTBound from the example application) You'll likely need to manually (by opening the .VCX as a table) ReDefine such classes to something like lblBase so that you can open the containing .VCX via the Class Browser or Project Manager without them complaining that lblBound cannot be found.

New Feature: Basic user security
Added basic user security, driven from the new USERS.Usr_Rights field values ("S", "G", "R"). Here's how it works:
1) After user login, we can use oUser.GetUserInfo("Usr_Rights") at any time to determine the global security of the app:�"S"upervisor -- full access to all features�"G"lobal read/write -- full access to all features not Supervisor-only�"R"ead-only -- full access to all features not Supervisor-only, but with read-only access
2) On Form.Load(), a new form property ilReadOnly is set according to oUser.GetUserInfo("Usr_Rights"): "R"=.T., otherwise .F.
3) As form controls Init(), they call their SetUserSecurity() method and set Enabled/ReadOnly according to their BaseClass:�edt, grd, spn, txt -- ReadOnly = .t.�cbo, chk, lst, opg -- Enabled = .f.�olb -- AutoActivate = 0�Commandbuttons are not handled in VM, since their Enabled status can't be determined this high in the hierarchy.
4) Form.Init() calls Form.SetUserSecurity() to allow setting anything else you want in addition to what the individual controls have already done. Of course, you can subclass to override any of the default behaviors established in these classes in X3FW.VCX.
My informal testing shows that the performance penalty for all each control.SetUserSecurity() call is minimal, probably imperceptible, likely because all that's being manipulated is inherent properties; no calls to extra methods or UDFs.
Changes made to:�X3FW.VCX/cboBase.Init() -- added a call to THIS.SetUserSecurity()�X3FW.VCX/cboBase.SetUserSecurity() -- establish default behavior�X3FW.VCX/chkBase.Init() -- added a call to THIS.SetUserSecurity()�X3FW.VCX/chkBase.SetUserSecurity() -- establish default behavior�X3FW.VCX/cmdBase.Init() -- added a call to THIS.SetUserSecurity()�X3FW.VCX/cmdBase.SetUserSecurity() -- empty method for use in subclasses�X3FW.VCX/edtBase.Init() -- added a call to THIS.SetUserSecurity()�X3FW.VCX/edtBase.SetUserSecurity() -- establish default behavior�X3FW.VCX/frmBase.ilReadOnly -- new protected property �X3FW.VCX/frmBase.SetReadOnly() -- establish default behavior�X3FW.VCX/frmBase.SetUserSecurity() -- establish default behavior�X3FW.VCX/frmBase.Load() -- call THIS.SetReadOnly()�X3FW.VCX/frmBase.Init() -- call THIS.SetUserSecurity()�X3FW.VCX/frmLogin.SetReadOnly() -- overridden via explicit THIS.ilReadOnly = .T.�X3FW.VCX/frmLogin.SetUserSecurity() -- overridden via RETURN .F.�X3FW.VCX/frmReportDestination.SetReadOnly() -- overridden via NODEFAULT�X3FW.VCX/frmReportDestination.SetUserSecurity() -- overridden via RETURN .F.�X3FW.VCX/grdBase.Init() -- added a call to THIS.SetUserSecurity()�X3FW.VCX/grdBase.SetUserSecurity() -- establish default behavior�X3FW.VCX/lstBase.Init() -- added a call to THIS.SetUserSecurity()�X3FW.VCX/lstBase.SetUserSecurity() -- empty method for use in subclasses�X3FW.VCX/olbBase.Init() -- added a call to THIS.SetUserSecurity()�X3FW.VCX/olbBase.SetUserSecurity() -- establish default behavior�X3FW.VCX/opgBase.Init() -- added a call to THIS.SetUserSecurity()�X3FW.VCX/opgBase.SetUserSecurity() -- establish default behavior�X3FW.VCX/spnBase.Init() -- added a call to THIS.SetUserSecurity()�X3FW.VCX/spnBase.SetUserSecurity() -- establish default behavior�X3FW.VCX/tbrBase.Init() -- added a call to THIS.SetUserSecurity()�X3FW.VCX/tbrBase.SetUserSecurity() -- empty method for use in subclasses�X3FW.VCX/txtBase.Init() -- added a call to THIS.SetUserSecurity()�X3FW.VCX/txtBase.SetUserSecurity() -- establish default behavior
Since user security is frequently decided on a per-app basis, all the SetUserSecurity() methods are hook-ready so you can easily hook in a runtime behavior of your choice.
No retrofitting required -- all you have to do is set each user's USERS.Usr_Rights to one of the 3 values, and you get the default behavior. Note that you'll have to populate SetUserSecurity() to your needs for your CommandButton classes, as there is no default behavior in X3FW.VCX/cmdBase, the only commandbutton class in VM of our framework. If you have VMP, see the revision history there for our default treatment of bound controls and commandbuttons.
Also, please note that we have so far not established any default behavior for toolbars. SetUserSecurity is set up for "hooking" to variant behaviors at run-time (if you have VMP, see X3FWFRM.VCX/frmUserMaintenance and MTDEUSR.SCX for examples)
Enhancement: New menu manager/oMenu methods
Added 2 new empty sandwich methods, for use in subclasses: �X3FW.VCX/cusMenu.BeforeInstallMenu()�X3FW.VCX/cusMenu.AfterInstallMenu()
No retrofitting required
Enhancement: Remove non-supervisor menu options
Added code to remove the Tools/Re-Index and Tools/System Setup menu bars if the user doesn't have "S"upervisor rights:�X3FW.VCX/cusMenu.AfterInstallInitialMenu()
No retrofitting required unless you have code in AfterInstallInitialMenu() in your subclass(es).
HEADS UP!!!
I am most likely going to set RecordMark=.F. in X3FW.VCX/grdBase. Since you can't really control it, it is useless as an indicator of the current row. Highlighting the current row is already in the framework and is reliable. So rather than leave RecordMark=.T. and have users constantly ask why it sometimes disappears, I'm likely going to set it to .F. in the framework and forget about it. From all the VFP5 demos I've seen, things aren't going to improve in this area... Also, using the highlight-the-current-row technology in the framework, you can add easily add a calculated column with the mark character of your choice, like we did in 2.x.
Enhancement: Smoother page-refresh using LockScreen
Added code to X3FW.VCX/pgfPageRefresh and X3FW.VCX/txtPageRefresh to LockScreen on deactivating a page, and unlocking it on activating a new page. Makes the transition from page to page a little smoother visually, especially when pages have lots of controls and/or grids.�X3FW.VCX/pgfPageRefresh.CommonPageActivate() -- added code to un-LockScreen�X3FW.VCX/pgfPageRefresh.CommonPageDeactivate() -- new method to LockScreen�X3FW.VCX/txtPageRefresh.UIEnable() -- added code for the Deactivate() side of things
No retrofitting required
Modification: No edtBase.iuValueOnGotFocus()
I commented out the only use of X3FW.VCX/edtBase.iuValueOnGotFocus, and will likely remove it entirely in a future version. Not really a good idea for an editbox, and I just encountered a nasty GPF with it....
No retrofitting required (unless, of course, you're using it...)
Bug Fix: Wrong ControlSource test
Modified X3FW.VCX/frmData.CheckRequiredFields to test empty(eval(loControl.ControlSource)) instead of empty(loControl.Value) because when controls are on non-showing-at-the-moment pages of a pageframe, their Value isn't set to match their ControlSource until they are Refresh()ed.
No retrofitting required
New feature: Year 2000 strategy:
X3FW.VCX/ctrApp.SetupSets() -- set century on�X3FW.VCX/ctrApp.PrivateDataSessionSets.Init() -- set century on�X3FW.VCX/txtBase.inCenturyRollover -- new protected property�X3FW.VCX/txtBase.icContents -- new protected property�X3FW.VCX/txtBase.GotFocus() -- added code to reset THIS.icContents�X3FW.VCX/txtBase.KeyPress() -- added code to store .icContents and to take care of 02/29/00 (02/29/1900 is a bogus date, 02/29/2000 is legal)�X3FW.VCX/txtBase.Valid() -- added code to call Year2000Strategy()�X3FW.VCX/txtBase.Year2000Strategy() -- default Year2000 Strategy, easily subclassed or hooked
For more details, see X3FW.VCX/txtBase.Year2000Strategy() comments.
No retrofitting required, but you're likely to want to make sure all your textboxes show all 4 digits of the year portion.
Modification: Added code to X2JSTFIL.PRG to return the UPPER(ALLTRIM())) of the string, to take case-sensitivity out of anything processed
No retrofitting required.
Enhancement: Shell methods
Added two empty methods to X3FWCTRL.VCX/cmdDataSave (called by .Click()) to provide additional hooks for your own custom code:�X3FWCTRL.VCX/cmdDataSave.AfterUltimateSuccess()�X3FWCTRL.VCX/cmdDataSave.AfterUltimateFailure()
No retrofitting required
Enhancement: Revamped our treatment of the requerying and refreshing of pageframe pages and data-entry grids.
X3FW.VCX/grdBase.inRecnoFlag -- new property, similar to the existing inCurrentRecno�X3FW.VCX/grdBase.SetCurrentRecno() -- store .inRecnoFlag�X3FW.VCX/grdBase.Init() -- store .inRecnoFlag �X3FW.VCX/pgfPageRefresh.iaPageDEGrids -- new protected array of references to X3FWGRD.VCX/grdDataEntry (Visual MaxFrame Professional) data-entry grids contained on each page�X3FW.VCX/pgfPageRefresh.SeeIfPageNeedsRefreshing() -- added code to message any contained data-entry grids that they likely contain stale data�X3FW.VCX/pgfPageRefresh.SetiaPageDEGrids() -- new method to populate .iaPageDEGrids array�X3FW.VCX/pgfPageRefresh.FormContainsDEGrids() -- new method that finds out if THISFORM contains any data-entry grid(s)
No retrofitting required; see the Visual MaxFrame Professional revision history
Version 1.5 9/3/96
New feature: Global error handling.
Here's how it works:
1- as soon as you enter X3FWMAIN.PRG, on("ERROR") is checked, and if it is empty(), ON ERROR do InitialErrorHandler is executed.
1a- local procedure is a mini-error handler, intended for use between app startup and until the "real" error handler, X3ERROR is installed in oApp.InstallGlobalErrorHandler()
1b- if on("ERROR") is not empty, we assume it's because you don't want ON ERROR do InitialErrorHandler... and have installed your own ON ERROR routine in your main calling program that called X3FWMAIN
2- the global error handler X3ERROR is installed in X3FW.VCX/ctrApp.InstallGlobalErrorHandler(), replacing the one in existence at that time (see above).
3- if you don't want the default behavior in oApp.InstallGlobalErrorHandler(), just override it in your oApp subclass
4- in the cleanup code here in X3FWMAIN.PRG, there is a plain ON ERRORstatement
Once an error is generated that invokes X3ERROR, it is handled, logged, and the system in shut down. See X3ERROR for the gory details. There is a lot more that can be done in this regard, of course. I have plans to add some sort of form-level error handling, but I don't know when I'll get it installed. The only problem I know of at this time is when an error occurs in a Stored Procedure during a TABLEUPDATE(). The user is still kicked out, but there are a couple of extra dialogs along the way. I'm working on it...
X3ERROR.PRG -- global ON ERROR routine
X3FW.VCX/ctrApp.InstallGlobalErrorHandler() -- what it says <g>
 .NoOnError -- new method to allow running with no ON ERROR during development
 .Init() -- call THIS.InstallGlobalErrorHandler() and THIS.NoOnError()
X3FWMAIN.PRG -- added a plain ON ERROR call in cleanup
 -- new local procedure InitialErrorHandler
 -- added a (conditional) ON ERROR do InitialErrorHandler
X3FWDATA.PRG -- added a xxCONFIG.DBF record for "NoOnErrorDuringDev", default to .T.
No retrofitting required, although you'll likely want to add a record to your xxCONFIG.DBF to toggle ON ERROR installation on/off during development:
m.Ap_Item = "NoOnErrorDuringDev"
m.Ap_ItemDTp = "L"
m.Ap_ItemVal = ".T."
m.Ap_ItemDsc = "Indicates whether ON ERROR error handler is in effect during development"
insert into <xxCONFIG.DBF> from memvar
Bug Fix: Added a check to X3FW.VCX/cusMenu.AfterInstallInitialMenu() to make sure there is in fact a Tools menu pad before attempting to remove non-Supervisor options from it
No retrofitting required
Bug Fix: Added an explicit ASCENDING keyword to the restoration code in X3FWLIBS.VCX/cusPushPopOrder.Destroy().
No retrofitting required
Bug Fix: Fixed a couple of bugs in X3CNVCHR.PRG
No retrofitting required
Bug Fix: I left in an IF .F./ENDIF in X3FWMAIN.PRG to suppress the splash screen installation. I was debugging something for which the splash screen got in my way and forgot to turn it back on. Sorry about that!
No retrofitting required
Bug Fix: Added a missing RECNO() check to X3SEEK.PRG
No retrofitting required
Bug Fix: Fixed bugs in X3FW.VCX/cusMenu all having to do with reltive referencing of menu bars
 AfterInstallInitialMenu()
 DoesBarPromptExist()
 DefineBar()
No retrofitting required
Bug Fix: Default user-specific _Screen manipulation
Added default values to USERS/V_USERS fields Usr_ScreenWindowState and Usr_DevTbrDockPosition. The addition is done in X3FWDATA.PRG
Retrofitting requires:
clear all
close all
open data MyDBC excl
alter table USERS alter column Usr_ScreenWindowState set default 2
alter table USERS alter column Usr_DevTbrDockPosition set default -1
=dbsetprop("V_USERS.Usr_ScreenWindowState","FIELD","DEFAULTVALUE","2")
=dbsetprop("V_USERS.Usr_DevTbrDockPosition","FIELD","DEFAULTVALUE","-1")
clear all
close all
Enhancement: Added the application IconFile (if specified) to X3FWFRM.VCX/frmStandby
No retrofitting required
Bug Fix: X3FW.VCX/ctrApp.ClearEvents() needed extra code in the CASE checking for a modal form on top because some modal form hierarchies in VM protect the WindowType property.
No retrofitting required.
Enhancement: Modified X3FW.VCX/frmBase.Proximity label to catch more label positions and do both the left and above checks in a single pass.
No retrofitting required
Enhancement: Improved required-field checking
Modified X3FWCTRL.VCX/cmdDataSave.CheckRequiredFields() to check the corresponding base table Caption property if the field is a local view field which doesn't have a Caption specified (this after a call to THISFORM.ProximityLabel() comes up empty-handed).
No retrofitting required.
Bug Fix: Trapped for Delete keypresses that seem buggy
VFP has a bug that manifests itself like this -- in a checkbox or optionbutton, if there is a commandbutton on the same form with a \<S hotkey (like a \<Save button), pressing the DELETE key fires the \<S commandbutton. In this fix, X3FW.VCX/chkBase.KeyPress() and all the OptionButtons in X3FW.VCX/opgBase.KeyPress() have code to "eat" the DELETE keystroke.
No retrofitting required.
Enhancment: Added listbox features parallel to ones added to combos recently:
X3FW.VCX/lstBase.iaList[1] -- array property for when RowSourceType=5-Array
	.UniqueAlias() -- returns a unique alias for when RowSourceType=2-Alias
 .Init() -- added functionality
	.Destroy() -- added code to automatically USE any cursor used when RowSourceType=3-SQL statement
	.Requery() -- added instruction comments
	.zReadMe() -- updated
Modification: Split out some of the code in X3FW.VCX/cusAppLibs.AddMembers() into a separate ProcessVCX() method for greater flexibility.
No retrofitting required.
Enhancement: Added SetUserSecurity() method to the following "base" classes in X3FW.VCX (now all base classes have it):
ctrBase
cusBase
imgBase
linBase
pgfBase
shpBase
tmrBase
No retrofitting required
Enhancement: Added some niceties to X3FW.VCX/ctrApp.ReindexTables()
No Retrofitting required.
Enhancement: APPCONFIG values
Added several distribution-time items to the xxCONFIG.DBF/APPCONFIG table to store the version number, copyright, registration, etc. information. X3FWDATA.PRG populates them with defaults. These values are not used anywhere in the framework, but you can use them in your application-specific stuff like splash screens, Help/About..., etc.
No retrofitting required unless you've been tracking these manually or want to incorporate them.
Version 1.51 9/9/96
Bug Fix: Added an IF type("loScreen") = "O"... check to the code at the end of X3FWMAIN.PRG/InstallSplashScreen.
No retrofitting required
Enhancement: _Screen startup and termination
Added code to X3FWMAIN.PRG to SET SYSMENU OFF and SET STATUS BAR OFF before the splash screen installation to make it smoother during development. This required an adjustment to X3FW.VCX/ctrApp.Destroy() and SaveReset().
No retrofitting required
Enhancement: VFP5/Pageframe.Page
Added code to make VFP5 pageframes behave more like VFP3 pageframes -- send focus to the first control on Page.Activate instead of leaving focus on the Page caption. It's not perfect, but it covers most situations.
X3FW.VCX/pgfPageRefresh.CommonPageActivate()
No retrofitting required
Modification: grdBase.RecordMark = .f.
Finally got around to setting grdBase.RecordMark = .f. This one entailed some internal changes to X3FWPICK.VCX to remove code (that doesn't work in VFP5 anyway) to update the RecordMark. But the real retrofitting is all aesthetic, to do something with the 10-or-so pixels of extra real estate.
X3FW.VCX/grdBase.RecordMark
Retrofitting requires visiting all your forms that have grids and adjust your column widths to use the extra width.
Enhancement: Changed the term "Error Message" in X3FWFRM.VCX/frmErrorLog to "System Message"
No retrofitting required
Modification: cusDBCSvc overhaul
Major overhaul of X3FWLIBS.VCX/cusDBCSvc.OpenTable() to provide full compatibility with SDT yet do things the way I need them done within Visual MaxFrame. Testing of this modification also showed a need to modify X3ERROR.PRG to release and X3FWMAIN-installed splash screen in case an error is generated during app startup between the time X3ERROR is installed as the global error handler, and oApp releases the splash screen.
No retrofitting required
Modification: Made several minor updates to X3ERROR.PRG as indicated from additional testing.
No retrofitting required
Bug Fix: Fixed a "Data type mismatch" error in X3FW.VCX/frmBase.ProximityLabel()
No retrofitting required
Modification: Added a SKIP FOR to the Edit menu pad definition so that it's disabled when there is no active form.
X3FW.VCX/cusMenu.InstallStandardEditMenuPad()
No retrofitting required
Enhancement: Provided for specifying the directory location of ERRORLOG.DBF, heretofore always located/created in the current directory, and now defaults to:
- if no "ErrorLogDirectory" record in APPCONFIG, the directory containing the application's main database
- if an "ErrorLogDirectory" record in APPCONFIG, the indicated directory (may be empty/blank, which indicates ERRORLOG.DBF is to be created/maintained in the current directory)
X3FW.VCX/ctrApp.NoOnError() -- removed, moved logic to InstallGlobalErrorHandler()
X3FW.VCX/ctrApp.Init() -- moved the call to InstallGlobalErrorHandler()
X3FW.VCX/ctrApp.Init() -- removed the call to NoOnError()
X3FW.VCX/ctrApp.InstallGlobalErrorHandler() -- modified
X3FW.VCX/ctrApp.GetErrorLogDir() -- new method
X3FWDATA.PRG -- added a "ErrorLogDirectory" record to APPCONFIG
No retrofitting required unless you want to specify a directory where ERRORLOG.DBF should be created/located, in which case you need to add an "ErrorLogDirectory" record to APPCONFIG, and populate it accordingly. Note that X3FWDATA now creates this record, but leaves it empty.
Bug Fix: AERROR[2] has the same problem as the MESSAGE() function, and can overwrite the actual file/variable indicated in the MESSAGE(), so X3ERROR saves the real MESSAGE() and stores it to ERRORLOG.ER_Message instead of AERROR[2].
No Retrofitting required
Version 1.52 9/13/96
Modification: VFP 5.0 grid.AllowAddNew is worthless
Now that I've discovered that the VFP5.0 Grid.AllowAddNew property and resulting behavior are relatively useless, I've had to modify the VM/VMP implementation of AllowAddNew behavior in the data-entry grid class in Visual MaxFrame Professional, as well as the base control classes that cooperate to provide the desired behavior.
This modification affects
X3FW.VCX/chkBase.KeyPress
X3FW.VCX/cmdBase.KeyPress
X3FW.VCX/spnBase.KeyPress
X3FW.VCX/txtBase.KeyPress
in Visual MaxFrame, and X3FWGRD.VCX/grdDataEntry (method code, plus replacement of AllowAddNew property with ilAllowAddNew) in Visual MaxFrame Professional.
Here's the deal: In VFP 5.0, if you set Grid.AllowAddNew=.T., then when the user presses {DNARROW} while in the last row of the grid, VFP executes an implicit APPEND BLANK. The problem is that there is no associated event where you can put method code. So you can't duplicate the behavior of your <Add> commandbutton, which contains (much) more than just an APPEND BLANK. Since I'd already put in the VFP3.0b-specific code to duplicate the desired behavior in VFP3, this modification simply invokes that behavior for both versions of VFP, based on the custom ilAllowAddNew instead of AllowAddNew.
No retrofitting required
Modification: Kindler, gentler error log
Kelly Conway opines that the term "Error Log" is too ominous for the user, especially when that user is looking over the Supervisor who is calling it up on his screen. While I have little regard for users <bg>, I graciously changed all references of "Error log" to "Event Log". Also changed the name of
X3FWFRM.VCX/frmErrorLog to X3FWFRM.VCX/frmEventLog.
X3FW.VCX/cusMenu.AfterInstallInitialMenu()
X3FWFRM.VCX/frmErrorLog-->frmEventLog
No retrofitting required unless you've subclassed frmErrorLog or in some other way referred to it explicitly.
Bug Fix: After the X3FWLIBS.VCX/cusDBCSvc.OpenTable() major overhaul in the last version, one reference was left in that used the tcTable parameter instead of the lcJustTableAlias memvar.
No retrofitting required.
Enhancement: New VFP5 support for SCREEN=OFF
Added support for the fact that you can suppress the VFP native screen during startup in VFP 5.0. Visual MaxFrame has been modified to expect (but not require) an invisible screen on application startup via SCREEN=OFF in the CONFIG.FPW. Support added here for any specified splash screen to be a Top-Level/SDI form and therefore visible by itself during setup.
X3FW.VCX/ctrApp.ReleaseSplash() -- new method
X3FW.VCX/frmBase.ShowWindow -- new property that is a native property to VFP5.0. Ignored in VFP3.0b
X3FWMAIN.PRG -- various _Screen.Visible = .t. lines and appropriate VFP3/VFP5 code
No retrofitting required, although if you want to take advantage of this enhancement in VFP 5.0, you'll have to make sure your splash screen is a Top-Level/SDI form. And note the following behavior I consider a bug in VFP 5.0:
Create a form as a subclass of X3FW.VCX/frmSplash (or any other form class). The form can be .VCX-based or .SCX-based, it doesn't matter.
Be sure to set ShowWindow = 2 Top-Level Form.
Note that the title bar is not visible in the Form/Class Designer because all the title bar properties have been set to .F..
Run the form
Note that the blank title bar appears
The only solution I've found that works is to create an .SCX-based form, based on the VFP base class Form, set the properties that default in X3FW.VCX/frmSplash:
BorderStyle = 0
Caption = (None)
Closable = .F.
ControlBox = .F.
MaxButton = .F.
MinButton = .F.
Movable = .F.
ShowWindow = 2
If you have Visual MaxFrame Professional, see the call to X3FWMAIN.PRG in VMMAIN, and VMSPLASH.SCX.
Bug Fix: Fixed error on requerying the ERRORLOG on answering <No> to the X3WINMSG dialog asking the user to confirm <Delete>
No retrofitting required
Modification: Simplified X3GETVER.PRG
No retrofitting required
Modification: Added to the SKIP FOR condition in the default Edit menu pad installed in X3FW.VCX/cusMenu to enable it when I'm in my NOTES.PRG called from the Developer's Toolbar.
No retrofitting required
Version 1.6 10/05/96
Modification: Fixed a problem in our manual {DNARROW}-to-add-a-grid-row behavior, which exhibited itself in the following manner:
1- go to a grid with .ilAllowAddNew = .T.
2- press {DNARROW} until you get to the last row (stop there and don't add a row
3- use the mouse to select any other control (I pressed <OK> expecting to leave the form)
4- the behavior kicks in because the last keypress was {DNARROW}, adding a row and sending the form into Add mode instead of leaving the form
The fix is in X3FWGRD.grdDataEntry.CommonColumnControlLostFocus()
No retrofitting required
Enhancement: VFP5 properties
Added the following as custom properties in X3FW.VCX/grdBase. They are all native properties to VFP 5.0, but they're established here (and ignored if running an app built on Visual MaxFrame in 3.0b) so that they carry over to VFP 5.0 when you recompile Visual MaxFrame in 5.0. In each case, the default setting we use is a logical false .F., which is not the VFP 5.0 default. VFP 5.0 uses a default for backward compatibility, but in each case, we think the default should be the opposite, changed by exception on a case-by-case basis.
.AllowHeaderSizing (defaults to .F.)
.AllowRowSizing (defaults to .F.)
.SplitBar (defaults to .F.)
No retrofitting required
Enhancement: VFP5 properties
Added code to the Init of spnBase and cboBase to mirror that of txtBase to take advantage of the .BorderStyle property added to spinners and combos in VFP 5.0. As with textboxes, in VFP 5.0, spinners and combos in grid columns have code to ensure they have no big clunky border. Ignored in VFP 3.0b
No retrofitting required
Modification: Added some missing SET commands (to their defaults) to X3FW.VCX/ctrApp.SetupSets()
No retrofitting required
Modification: Improved combo and listbox behaivors:
X3FW.VCX/cboBase.Init() -- added an IF..ENDIF to only default .RowSource if it's empty
X3FW.VCX/cboBase.zReadme() -- updated zReadMe slightly
X3FW.VCX/lstBase.Init() -- added an IF..ENDIF to only default .RowSource if it's empty
X3FW.VCX/lstBase.zReadme() -- updated zReadMe slightly
No retrofitting required
Modification: To yield a slight performance benefit, modified the code that returns an object reference to the active control in a grid.
X3FW.VCX/cusForms.RealActiveControl()
No retrofitting required
Enhancement: Coded a work-around to eliminate the need to add an extra blank pixel between the rightmost column and the vertical scrollbar of grids with no horizontal scrollbar and columns that exactly fit the grid.Width.
X3FW.VCX/grdBase.AfterRowColChange() -- modified
X3FW.VCX/grdBase.BeforeRowColChange() -- modified
No retrofitting required
Bug Fix: An ELSE was missing that crashed X3FWLIBS.VCX/cusDBCSvc.OpenTable() if you're not hooked to SDT and you passed the 4th (explicit ALIAS) parameter.
No retrofitting required
Enhancement: Updated the code that determines if a form is being run standalone, to provide for additional "standalone" scenarios, like calling the form from a .PRG at the Command Window.
X3FW.VCX/StandAloneSetup()
No retrofitting required
Bug Fix: The form presented to the user in X3ERROR was timing out after one minute instead of one hour.
X3ERROR.PRG
No retrofitting required
Bug Fix: Inadvertently called X3STDBY in X3FW.VCX/ctrApp, forgetting that X3STDBY.PRG is not part of Visual MaxFrame. Modified the code to only call it if it's available.
No retrofitting required
Enhancement: Added the 6 new VFP5 SET commands to X3FW.VCX/ctrApp.SetupSets()
SET ASSERTS, COVERAGE, EVENTLIST, EVENTTRACKING TO/OFF, NULLDISPLAY
No retrofitting required
Modification: Goodbye oReports
All cusReports/oReports report manager support has been removed from Visual MaxFrame. Analysis revealed that a report manager object is overkill and not necessary. We have implemented full reporting features in Visual MaxFrame Professional.
Removed X3FW.VCX/cusReports
Removed X3FW.VCX/frmReportCatalog
Replaced the X3FWMAIN.PRG/tcReportsClass parameter with a new tcToolbarsClass parameter, in preparation for the installation of a new cusToolbars/oToolbar toolbar manager object, under construction.
Renamed X3FW.VCX/ctrApp.BeforeInstallReportsMgr() to BeforeInstallToolbarsMgr()
Renamed X3FW.VCX/ctrApp.AfterInstallReportsMgr() to AfterInstallToolbarsMgr()
No retrofitting required unless you have somehow been using the old X3FW.VCX/cusReports or X3FW.VCX/frmReportCatalog, in which case you'll have to make the necessary adjustments. You might have to save those 2 classes out into a separate .VCX and decide what your implementation will be, as the idea of a "report manager" is no longer supported in Visual MaxFrame. Visual MaxFrame Professional contains report-specific classes in X3FWFRM.VCX and X3FWMISC.VCX, but there's no overall "report manager" concept.
New Feature: Toolbar manager (under construction).
Added X3FW.VCX/cusToolbars placeholder class definition
X3FWMAIN.PRG now receives a tcToolbarsClass where the now-defunct tcReportsClass used to be.
X3FWMAIN.PRG now creates an oToolbar object where the now-defunct oReports object used to be.
No retrofitting required
Enhancement: new frmBase.ioCallingForm property
Added X3FW.VCX/frmBase.ioCallingForm property, intended for storing an object reference to the calling form, primarily for modal forms. Putting it on frmBase is intended to help standardize its use, already in the following X3FWFRM.VCX classes: frmMemoEdit and frmSelCriteria. See frmBase.zReadMe() for further info.
No retrofitting required.
Enhancement: Modified standalone code in X3FW.VCX/frmBase to explicitly release public memvars created during the life of the form, leaving pre-existing ones for developer tools like Ken Levy's SuperCls intact.
No retrofitting required
Enhancement: Added code to X3FW.VCX/cusBase to set .Height and .Width to 0 on instantiation, to prevent them from interfering with mouseclicks getting thru to objects/controls underneath them in the graphical zOrder.
X3FW.VCX/cusBase.Init()
X3FW.VCX/cusForms.DoForm()
No retrofitting required
Enhancement: Added new DEBeforeOpenTables() method to X3FW.VCX/frmData. See the comments for an explanation.
No retrofitting required, but you may want to start making use of it once you read its comments and see what it does.
Enhancement: iaVelcro[] array
Added new iaVelcro[] array property to all "base" classes in X3FW.VCX. Visual MaxFrame does not use this property, but new features in this version of Visual MaxFrame Professional do. This array property provides a place to store object references to other objects (think of them as "attached") to extend behaviors without subclassing.
No retrofitting required.
Enhancement: New min/max properties and method to validate that THIS.Value is within a specified range.
X3FW.VCX/txtBase.iuMinValue -- new property
X3FW.VCX/txtBase.iuMaxValue -- new property
X3FW.VCX/txtBase.WithinRange() -- new method
X3FW.VCX/txtBase.Valid() -- additional code to call THIS.WithinRange()
X3FW.VCX/spnBase.iuMinValue -- new property
X3FW.VCX/spnBase.iuMaxValue -- new property
X3FW.VCX/spnBase.WithinRange() -- new method
X3FW.VCX/spnBase.Valid() -- additional code to call THIS.WithinRange()
No retrofitting required
Modification: Explicitly turned off the default user-security logic in X3FW.VCX/frmNonDataModal.SetUserSecurity() because (non-data) dialogs should generally not be readonly.
No retrofitting required
Modification: Migrated the code from X3SETHOK.PRG to the SetHook() method of each X3FW.VCX/xxxBase class. Deleted X3SETHOK.PRG
No retrofitting required
Version 1.7 10/14/96
Bug Fix: Added code to X3WINMSG.PRG to prevent Form.LockScreen not being set to .F. when calling a MESSAGEBOX() from a grid control.
No retrofitting required
Enhancement: Added a local procedure PMFAKEOUT to X3FWMAIN.PRG to pull files called by indirection/macro substitution into any .PJX.
No retrofitting required.
Modification: Changed X3FW.VCX/frmBase.SetReadOnly() from protected to exposed, added some explanatory comments.
No retrofitting required.
Modification: Added a few cleanup details to X3ERROR.PRG, and added some code to better handle things when a modal form is the current active form on encountering an error.
No retrofitting required.
Enhancement: Revised X3FW.VCX/frmBase.GetFirstControl() to work differently/better, and added GetFirstControl() to ctrBase and pgfBase for "drilldown" behavior.
X3FW.VCX/frmBase.GetFirstControl() -- modified
X3FW.VCX/frmBase.ioFirstControl -- new property
X3FW.VCX/frmBase.ioFirstDrillDownControl -- new property
X3FW.VCX/ctrBase.GetFirstControl() -- new method
X3FW.VCX/ctrBase.icFirstControl -- new property
X3FW.VCX/pgfBase.GetFirstControl() -- new method
X3FW.VCX/pgfBase.icFirstControl -- new property
X3FW.VCX/pgfPageRefresh.CommonPageActivate() -- VFP5-specific code modified
No retrofitting required unless you used the old X3FW.VCX/frmBase.GetFirstControl(), in which case you'll have to revisit those calls and change the parameters sent and otherwise check that the value returned is what you expect, modify as necessary.
There were no calls to frmBase.GetFirstControl() in Visual MaxFrame Professional or the example VM application.
Enhancement: Made modifications to improve performance of the FOR..ENDFOR loops in the following methods:
X3FW.VCX/frmBase.RefreshFormControlsOfBaseClass()
X3FW.VCX/frmBase.ProximityLabel()
X3FW.VCX/pgfPageRefresh.SetiaPageDEGrids()
No retrofitting required
Enhancement: Added IntegralHeight property to the xxxBase classes for which VFP5 has a native IntegralHeight property, established the default value of .T.
X3FW.VCX/edtBase
X3FW.VCX/lstBase
X3FW.VCX/txtBase
No retrofitting required
Enhancement: Added code to X3FW.VCX/chkBase.When() to RETURN .f. when the checkbox is in a grid column and the grid or the column has ReadOnly=.T.
No retrofitting required
Bug Fix: Beware PEMSTATUS()
I have now run into 2 situations where querying PEMSTATUS() causes unreleased object references that result in a private data session form to not release the private data session. The form goes away, but is still cached, causing all sorts of problems. I have seen this behavior with a call to PEMSTATUS(THISFORM,whatever,2) and a call to PEMSTATUS(THISFORM.oMember,whatever,5). Nasty stuff. So in this bug fix, I have removed any non-essential PEMSTATUS() calls.
The alternatives aren't pretty, but many PEMSTATUS() calls can be replaced with calls to the TYPE() function to test a property's existence (TYPE() is about 2x slower than PEMSTATUS) or X3CPEDIG() to test a PEM's existence indirectly by checking the ancestry of the object (X3CPEDIG() is about 60x slower than PEMSTATUS)
I have also added a custom exposed property to all X3FW.VCX/xxxBase classes, ilVM whose existence can be tested to determine if a particular object inherits from the Visual MaxFrame hieriarchy:
IF type("SomeObject.ilVM") # "U"
and have modified some PEMSTATUS() calls to the above.
No retrofitting required
Version 1.8 10/17/96
Bug Fix: X3FWLIBS.VCX/cusDBCSvc.OpenAllTables() passed parameters incorrectly to OpenTable(). That led to finding/fixing a bug in OpenTable()...
No retrofitting required
Enhancement: Provided for a default behavior from reports when there is no data on which to report.
X3FWMISC.VCX/frmReport.AfterPrepareData() -- modified
X3FWMISC.VCX/frmReport.Init() -- modified
X3FWMISC.VCX/frmReport.ActionOnNoData() -- new
No retrofitting required unless you want to modify ActionOnNoData, which simply lets the user know via an X3WINMSG() and the report is not executed.
Major Enhancement: Toolbar support has been totally revised/upgraded.
All toolbar logic in X3FW.VCX/cusForms has been removed, and all that logic moved to the new X3FW.VCX/cusToolbars, which has additional features to support any number of global toolbars, and one linked toolbar per form. New toolbar class X3FWFRM.VCX/tbrSCADONav in Visual MaxFrame Professional parallels X3FWFRM.VCX/frmDataEntrySCADO.
X3FW.VCX/ctrApp
	.Init() -- modified
	.SetupGlobalToolbars() -- new method
	.BeforeReadEvents() -- modified
	.DevToolbarInstall() -- modified
X3FW.VCX/cusFormInstance.Init() -- modified
X3FW.VCX/cusForms -- major revisions everywhere
	.ToolbarGetProp() -- deleted, no equivalent added to cusToolbars
	.ToolbarSetProp() -- deleted, no equivalent added to cusToolbars
X3FW.VCX/cusToolbars -- new class (the old one was just a placeholder)
X3FW.VCX/cusUser
	.AfterUserLogin() -- modified
	.GetUserPreference() -- new
	.SetUserPreference() -- new
X3FW.VCX/tbrBase
	.IsActiveFormControlValid() -- new
	.icType -- new
X3FW.VCX/frmBase
	.Activate() -- modified
	.Deactivate() -- modified
	.Resize() -- modified
	.QueryUnload() -- modified
	.HideShowLinkedToolbar -- new
X3FW.VCX/frmData
	.MovePointer() -- new method
	.Activate() -- modified
	.Deactivate() -- modified
X3FWLIBS.VCX/cusMoveRecord -- deleted class
Retrofitting requires:
Retrofit #1
If you used X3FWLIBS.VCX/cusMoveRecord for some reason, you will have to make other arrangements <g>.
This is one that's OK to save off the classes I've deleted into an X3OBS.VCX for now if you want to. That includes X3FWLIBS.VCX/cusMoveRecord which was bogus because it relied on SET DATASESSION TO, etc.
Retrofit #2
I've made modifications to the USERS table, removing the 6 fields that were really User Preferences. And I've added a table to the system tables used by VMP and created by X3FWDATA.PRG: USERPREFS.
You can run the following USERUPDT.PRG to make the modifications to your existing USERS table(s), and create the new USERPREFS table, transferring the 6 deleted field information to the new USERPREFS table
* USERUPDT.PRG
clear all
close all
set exclusive on

open database <MYDBC>

create table <myprefix>USRPRF name USERPREFS ;
 (Prf_UsrFK C(5) , ;
 Prf_Item C(30) , ;
 Prf_ItemDataType C(1) , ;
 Prf_ItemValue C(100), ;
 Prf_ItemDescription C(254))
select USERPREFS
alter table USERPREFS add primary key Prf_UsrFK + upper(Prf_Item) tag Prf_PK
index on deleted() tag Prf_Del
=dbsetprop("USERPREFS", "TABLE", "Comment", "User Preferences")
=dbsetprop("USERPREFS.Prf_UsrFK", "FIELD", "Comment", "Foreign key to the USERS table")
=dbsetprop("USERPREFS.Prf_Item", "FIELD", "Comment", "Preference item")
=dbsetprop("USERPREFS.Prf_ItemDataType", "FIELD", "Comment", "Data type for Prf_ItemValue (C,N,L,D,T)")
=dbsetprop("USERPREFS.Prf_ItemValue", "FIELD", "Comment", "Prf_Item value")
=dbsetprop("USERPREFS.Prf_ItemDescription", "FIELD", "Comment", "Description of Prf_Item")

use USERS in 0
select USERS
SCAN
 insert into USERPREFS ;
 (Prf_UsrFK, Prf_Item, Prf_ItemDataType, Prf_ItemValue) ;
 values ;
 (USERS.Usr_PK, "ScreenWindowState", "N", alltrim(str(USERS.Usr_ScreenWindowState)))
 insert into USERPREFS ;
 (Prf_UsrFK, Prf_Item, Prf_ItemDataType, Prf_ItemValue) ;
 values ;
 (USERS.Usr_PK, "DevTbrDockPosition", "N", IIF(isnull(USERS.Usr_DevTbrDockPosition),"-100",alltrim(str(USERS.Usr_DevTbrDockPosition))))
 insert into USERPREFS ;
 (Prf_UsrFK, Prf_Item, Prf_ItemDataType, Prf_ItemValue) ;
 values ;
 (USERS.Usr_PK, "ScreenTop", "N", alltrim(str(USERS.Usr_ScreenTop)))
 insert into USERPREFS ;
 (Prf_UsrFK, Prf_Item, Prf_ItemDataType, Prf_ItemValue) ;
 values ;
 (USERS.Usr_PK, "ScreenLeft", "N", alltrim(str(USERS.Usr_ScreenLeft)))
 insert into USERPREFS ;
 (Prf_UsrFK, Prf_Item, Prf_ItemDataType, Prf_ItemValue) ;
 values ;
 (USERS.Usr_PK, "ScreenWidth", "N", alltrim(str(USERS.Usr_ScreenWidth)))
 insert into USERPREFS ;
 (Prf_UsrFK, Prf_Item, Prf_ItemDataType, Prf_ItemValue) ;
 values ;
 (USERS.Usr_PK, "ScreenHeight", "N", alltrim(str(USERS.Usr_ScreenHeight)))
ENDSCAN

alter table USERS drop column Usr_ScreenWindowState
alter table USERS drop column Usr_ScreenTop
alter table USERS drop column Usr_ScreenLeft
alter table USERS drop column Usr_ScreenWidth
alter table USERS drop column Usr_ScreenHeight
alter table USERS drop column Usr_DevTbrDockPosition

return

Retrofit #3
That's about it. All the new toolbar stuff should work as it did before, only better. The only problem(s) you'll have is if you've subclassed stuff into cusForms/frmBase/etc. to handle toolbars in a way not previously supported in the framework. If that's the case, I'm not sure what to tell you. cusForms and cusToolbars have been completely revamped -- there's no toolbar stuff in cusForms anymore at all.
Version 1.9 10/22/96
Bug Fix: X3FW.VCX/cusForms.Cascade() had 2 bugs
No retrofitting required
Bug Fix: Added a missing ADDITIVE to the SET CLASSLIB in X3FWMAIN.PRG InstallSplashScreen local procedure.
No retrofitting required
Enhancement: Various enhancements to tbrSCADONav, including:
Picture .bmps are included in VMP
When docked or resized to vertical, nav buttons orient accordingly
No retrofitting required
Modification: Increased the length of 3 fields from C(20) to C(30)
APPCONFIG/xxCONFIG.DBF Ap_Item
APPINFO/xxSYSTEM.DBF App_Item
USERPREFS/xxUSRPRF.DBF Prf_Item
Retrofitting requires increasing the size of these fields
Modification: Consolidated 2 methods in X3FW.VCX/cusToolbars into a single one:
X3FW.VCX/cusToolbars.ShowGlobalToolbars() -- deleted
X3FW.VCX/cusToolbars.HideGlobalToolbars() -- deleted
X3FW.VCX/cusToolbars.HideShowAll() -- new
Retrofitting requires modifying existing calls to oToolbars.ShowGlobalToolbars() or oToolbars.HideGlobalToolbars() and replace them with a call to oToolbars.HideShowToolbars(), passing the right parameters.
Enhancement: New X3FW.VCX/cusToolbars.ReleaseGlobalToolbars()
No retrofitting required
Bug Fix: When the Developer's Toolbar was closed on exiting the app, the logic used to make it visible via menu selection next time in the app had a bug because of a change in the way a closed Developer's Toolbar is tracked.
No retrofitting required
Modification: Changed the custom iuValueOnGotFocus from protected to exposed/public for all X3FW.VCX/xxxBase controls that have that property. Removed iuValueOnGotFocus from X3FW.VCX/edtBase altogether.
No retrofitting required
Modification: Re-engineered all the existing toolbar stuff in various classes:
X3FW.VCX/frmBase
X3FW.VCX/cusToolbars
X3FW.VCX/tbrBase
Retrofitting requires seeing if anything you've built runs, if not, figuring out why <g>
Enhancement: XLIB.ZIP now contains a set of TBR*.BMP bitmaps for use on standard toolbars, like tbrSCADONav in X3FWFRM.VCX of Visual MaxFrame Professional.
No retrofitting required.
Enhancement: Modified X3FW.VCX/cusMenu.DefineBar() to return the number of the new bar
No retrofitting required unless you have ever used DefineBar() and used the RETURN value, which used to be logical .T./.F.
Enhancement: Added a new X3FW.VCX/cusMenu.GetBarNum() method
No retrofitting required
Modification: Removed X3FW.VCX/frmBase.inInitialLinkedToolbarDockPosition property because the new stuff restores toolbars based on the attributes saved to the USERPREFS table
No retrofitting required
Modification: Runtime menu options
Removed the code in X3FW.VCX/cusMenu.AfterInstallInitialMenu() -- it didn't belong there as a permanent, inherited part of the Visual MaxFrame framework. If you have Visual MaxFrame Professional, you'll find the code in VMFW.VCX/cusManu.AfterInstallInitialMenu() where it makes more sense.
No retrofitting required, but since you'll lose this code if you don't have Visual MaxFrame Professional, you might want to copy the X3FW.VCX/cusMenu.AfterInstallInitialMenu() code somewhere for safe keeping before you upgrade to this v1.91
Modification: Added shortcut hotkeys to the menu options in X3FWMAIN.MNX that were lacking
No retrofitting required
Version 1.91 10/23/96
Bug Fix: Fixed bugs in X3FW.VCX/ctrApp.DevToolbarInstall() that resulted in the developer's toolbar status not being saved properly from one session to the next
No retrofitting required
Modification: VFP5.0 toolbars
VFP5.0 introduces a behavior of toggling all toolbar controls invisible and then back to visible when issuing a Toolbar.Show(). Reworked the code in X3FW.VCX/cusToolbars.LinkedFormActivate() and HideShowAll() to eliminate this behavior.
No retrofitting required
Modification: Against my better judgement, I was coerced into removing the reference to "...this is your lucky day..." in X3FW.VCX/ctrApp.ReindexTables()
No retrofitting required
Bug Fix: Bug in X3FWMISC.VCX/frmReport.SeticDestination() resulted in redundantly getting the report destination dialog from the Report Catalog
No retrofitting required
Version 1.92 10/23/96
none
Version 1.93 10/24/96
Bug Fix: Fixed a bug and updated some of the math in X3FW.VCX/frmBase.ProximityLabel()
No retrofitting required
Version 1.94 10/24/96
Bug Fix: A side effect of a recent modification resulted in cascaded window being sent to AutoCenter when selected on the Window menu.
X3FW.VCX/frmBase.Show()
No retrofitting required.
Version 1.95 10/26/96
Enhancement: Added hook code to the RightClick() event method of all X3FW.VCX “xxxBase” classes.
No retrofitting required unless you’ve added your own RightClick code in subclasses/instances.
Visual MaxFrame Professional
Version 1.1 2/23/96
Enhancement: Added properties to txtPicklistValid
Added properties to X3FWCTRL.VCX/txtPicklistValid to control menu pad prompt and hotkey
No retrofitting required
New Feature: New class txtPicklistValid
Incremental auto-fill added to X3FWCTRL.VCX/txtPicklistValid
No retrofitting required
Version 1.2 2/27/96
Bug Fix: frmDEGridNavNoPages generated an error on requerying main view alias
Fixed bug in X3FWFRM.VCX/frmDEGridNavNoPages. When called in !THIS.ilAddOneRecordOnly mode, would generate an error on attempting THIS.ShellRequeryMainViewAlias in Init()
No retrofitting required.
Bug Fix: improper registration of txtPicklistValid update
Fixed bug in X3FWCTRL.VCX/txtPicklistValid. If an invalid value was entered, firing the picklist, from which the invalid value was added and then selected, then the newly-added value wasn't registered as a field update and not saved.
No retrofitting required.
Version 1.21 3/8/96
Bug Fix: Textbox.Value would revert when used in grid column and exited via keyboard
Fixed bug in X3FWCTRL.VCX/txtPicklistValid when the textbox is used in a grid column. Before this fix, the displayed .Value would revert on exiting the field via {TAB}/{ENTER} if a valid value had been keyboarded in the textbox.
No retrofitting required
Enhancement: Updated the way SET FILTER initially applied in data-management forms
Reworked the default way SET FILTER is applied in frmData::Init(), frmData::SetFilterRelation:�	Removed: frmData.ShellSetFilter()�	Added: frmData.icFilter�	Replaced: frmData.iuFilterValue with .icFilter
Retrofitting required only for data-entry forms that receive the 2nd tuFilterValue parameter and make use of it. Forms in the X3FW.VCX/frmData hierarchy are affected, primarily:�	X3FWFRM.VCX/frmDEFindNav�	X3FWFRM.VCX/frmDeGridNavNoPages�	X3FWFRM.VCX/frmDeGridNav2Pages�	X3FWPICK.VCX/frmPicklist
Any data-entry forms receiving the 2nd tuFilterValue need to instead receive tcFilter parameter. The former tuFilterValue was used in the former .ShellSetFilter() to manually SET the FILTER. This enhancement receives the entire filter expression in tcFilter and SETs it by default in the new SetFilterRelation() method.
NOTE: SetFilterRelation() is renamed to SetFilter() in version 1.3
Bug Fix: txtPicklistValid was removing embedded spaces as data was entered
Fixed bug in X3FWCTRL.VCX/txtPicklistValid.InteractiveChange() that resulted in embedded spaces being removed as data is entered
No retrofitting required.
Bug Fix: Form.Caption went blank when form received a filter parameter
Fixed bug in X3FWFRM.VCX/frmDataEntry.UpdateFormCaption() that resulted in a blank form caption when running a data-entry form receiving a filter condition parameter
No retrofitting required
�New Feature: form class frmUserMaintenance
Added form class X3FWFRM.VCX/frmUserMaintenance to make it easy to create a xxDEUSR.SCX User Reference Maintenance data-entry form.
No retrofitting required, but to actually use it, you'll need an LV_USERS local view:
clear all
close all
open database xxxxx exclusive
CREATE SQL VIEW LV_USERS AS ;
 SELECT * ;
 FROM xxxxx!USERS ;
 WHERE Users.usr_pk = ?lcUsr_PK
=DBSetProp('LV_USERS', 'View', 'UpdateType', 1)
=DBSetProp('LV_USERS', 'View', 'WhereType', 3)
=DBSetProp('LV_USERS', 'View', 'FetchMemo', .T.)
=DBSetProp('LV_USERS', 'View', 'SendUpdates', .T.)
=DBSetProp('LV_USERS', 'View', 'UseMemoSize', 255)
=DBSetProp('LV_USERS', 'View', 'FetchSize', 100)
=DBSetProp('LV_USERS', 'View', 'MaxRecords', -1)
=DBSetProp('LV_USERS', 'View', 'Tables', 'xxxxx!users')
=DBSetProp('LV_USERS.usr_pk', 'Field', 'KeyField', .T.)
=DBSetProp('LV_USERS.usr_pk', 'Field', 'Updatable', .T.)
=DBSetProp('LV_USERS.usr_pk', 'Field', 'UpdateName', 'xxxxx!users.usr_pk')
clear all
close all
NOTE: LV_USERS view is included in X3FWDATA.PRG in version 1.22, so you may not need to bother with this retrofit.
Modification: Redefined frmStandBy
Redefined class X3FWFRM.VCX/frmStandby as a subclass of the new (see Level 1 revisions) X3FW.VCX/frmNonData class.
No retrofitting required.
Modification: Redefined frmReadOnlyInfo as a subclass of frmDataModal
As a result of the Level 1 rename (see above) of X3FW.VCX/frmDataDialog to X3FW.VCX/frmDataModal:�	Redefined X3FWFRM.VCX/frmReadOnlyInfo as a subclass of X3FW.VCX/frmDataModal�	Redefined X3FWPICK.VCX/frmPicklist as a subclass of X3FW.VCX/frmDataModal.
No retrofitting required.
Modification: Improved check for record undergoing Edit now deleted() on <Cancel>
Improved the behavior of <Cancel>ing and finding that icMainTableAlias is now deleted(). Change is to X3FWCTRL.VCX/cmdDataCancel.Click()
No retrofitting required
Bug Fix: Improved the check-if-landed-on-deleted-record behavior
Behavior was incorrect on Activate()ing a data-entry form whose icMainTableAlias record is now deleted(). Change is to X3FWFRM.VCX/frmDataEntry.CheckIfOnDeletedRecord()
No retrofitting required
Bug Fix: Provided for proper refresh of pgfPageRefresh pages in certain remote-refresh situations
Details page(s) of pgfPageRefresh1 in data-entry form classes were not being properly remote-refreshed in certain situations. Change is in X3FWFRM.VCX/frmDataEntry.RemoteRefresh()
No retrofitting required
�Version 1.22 3/11/96
Bug Fix: insert overlooked callback
Modified code in X3FWFRM.VCX/frmDEGridNav.Activate() to not just override but callback to frmData::Activate() to 'manually inherit' higher-level Activate() code
No retrofitting required
Enhancement: added code to pull in .ICO and .BMP files into the .PJX
Added EXTERNAL FILE references to MTMAIN.PRG/pmFakeOut local procedure to pull .ICO and .BMP files into the .PJX.
No retrofitting required
Version 1.3 5/7/96
Bug Fix: Incomplete form repaint
Added some kludge code to X3FWFRM.VCX/frmUserMaintenance to fix the sporadic problem of incomplete Form.Paint() on instantiation.
No retrofitting required.
Enhancement: PK generation
Migrated X3FWCTRL.VCX/cmdDataSave.GeneratePK() up to X3FWFRM.VCX/frmDataEntry, where it is renamed GenAndPopPK() and further genericized to allow for more flexible PK generation.
No retrofitting required unless you have existing classes/instances that made explicit calls to the old X3FWCTRL.VCX/cmdDataSave.GeneratePK(), in which case you need to replace them with the appropriate THISFORM.GenAndPopPK() calls.
Enhancement: Better timer subclasses
Created 2 timer subclasses in X3FWCTRL.VCX, to provide the generic functionality heretofore only available in X3FWFRM.VCX/frmDEGridNavNoPages -- to do something (like refresh controls) when the user pauses for the Interval on a specific record.
No retrofitting required unless you added some explicit code to the timer you inherited from X3FWFRM.VCX/frmDEGridNavNoPages or if you modified the Grid.AfterRowColChange in X3FWFRM.VCX/frmDeGridNavNoPages to send explicit messages to the timer.
Enhancement: Empty picklist forms
Changed the default behavior when instantiating a xxPKxxx picklist form and there are no records in the table providing the Grid.RecordSource. The old behavior was to give the user a message dialog telling them there are no valid items and bailing out of the form. The new behavior calls up the form with no records and the <Select> button disabled, leaving <Cancel> and <Add> (if you allow it) available. Changes were made to�X3FWPICK.VCX/frmPicklist.EmptyPicklist() -- remove all code and leave a comment�X3FWPICK.VCX/cmdPicklistOK.Refresh() -- handle setting Enabled based on EOF() in the grid
No retrofitting required unless you want a different behavior from EmptyPicklist()
Modification: Moved delete code
Moved the code that was in X3FWCTRL.VCX/cmdDataDelete.DoTheDelete() to the new X3FWFRM.VCX/frmDataEntry.DeleteAction() method. Also added LockScreen behavior to the entire delete process, in cmdDataDelete.Click()
No retrofitting required unless you had modified DoTheDelete() in any instances or subclasses of cmdDataDelete.DoTheDelete().
Enhancement: Name property protection
Added code to protect against attempting to change the Name property of textboxes that are part of class definitions in X3BLDTXT.SCX (the MaxTech textbox Builder.) This enhancement uses the PEMSTATUS() function new to VFP 3.0b.
No retrofitting required
Bug Fix: Grid.Column.ControlSource protection
Modified code in X3FWCTRL.VCX/txtPicklistValid.ProcessNewValue() to handle Grid.Column.ControlSource goofiness
No retrofitting required.
Modification: When code moved to GotFocus
Moved the When() code to the GotFocus() method for the following classes in X3FWCTRL.VCX�chkBound�edtBound�txtBound
No retrofitting required unless you had added code to either the When() or the GotFocus() of any of the above classes.
Bug Fix: Protected the DBF() call
X3FWFRM.VCX/frmDataEntry.RemoteRefresh() executed the DBF() function when the passed alias could be closed, resulting in a crash
No retrofitting required.
Modification: Improved parameter handling
Changed the way parameters are received and processed in forms inheriting from �	X3FW/frmData tuInitialValue, tcFilter�	X3FWFRM/frmDataEntry tlAddOneRecordOnly�	X3FWPICK/frmPicklist tlNoAdd�See zReadMe for the lowest-level form classes�	frmDEGridNav2Pages�	frmDEGridNavNoPages�	frmDEFindNav�	frmPicklist�for the revised instructions. For this modification, we got rid of:�	iuInitialValue�	icFilter�and changed�	ilAddOneRecordOnly/tlNoAdd �to�	icAddOnTheFlyAlias/tlNoAddButton�and eliminated the setting of the above properties in the Init(). Now we pass the parameters up the inheritance hierarchy.
Retrofitting requires modifying your Init() code if you're receiving any of the 3 parameters (see zReadMe of the appropriate class X3FWFRM.VCX/X3FWPICK.VCX class definition)
Modification: New .PRG for manual-CK checking
Updated code in X3ONFILE.PRG to correct deficiencies in resetting the alias/database environment. OTE: New program X3MANUCK.PRG is an improved program, replacing X3ONFILE.PRG. X3ONFILE.PRG has not been removed from the X library for reasons of backward compatibility, but we recommend you use X3MANUCK.PRG from now on.
No retrofitting required, unless you want to convert your existing X3ONFILE() calls to X3MANUCK().
Enhancement: Better X3SEEK
Updated X3SEEK.PRG to allow optionally excluding buffered data from the SEEK().
No retrofitting required.
Modification: Renamed class
Changed the filename of X3FWTOOL.VCX/.VCT to X3TOOLS.VCX/.VCT and added some utility classes
Retrofitting requires updating the "DevToolbarClass" record of your APPINFO table accordingly.
Enhancement: New property
Added new property X3FWFRM.VCX/frmDataEntry.icPKPrepend plus code in X3FWFRM.VCX/frmDataEntry.GenAndPopPK() to handle PK generation when the PK expression is a concatenation of fields.
No retrofitting required unless you have existing forms that manage concatenated PKs manually and you'd like to take advantage of the generic/automatic stuff here.
Bug Fix: Fixed a typo in cmdDEGridDelete.Click() causing a crash on the 2nd CASE statement
No retrofitting required
Bug Fix: Concatenated PKs
Added any defined SEEK prepend value to the called picklist form in X3FWCTRL.VCX/txtPicklistValid.DoPicklistForm()
No retrofitting required, bug was only evident when using concatenated PKs
Modification: Changed X3FWFRM.VCX/frmUserMaintenance to use X3MANUCK() instead of X3ONFILE() for manual CK validation.
No retrofitting required.
Bug Fix: Added missing callback to X3FWCTRL.VCX/tmrGridPause.Init()
No retrofitting required.
Enhancement: Read-only added to MemoEdit classes
Added Read-Only capabilities to the combination of�	X3FWFRM.VCX/frmMemoEdit�	X3FWCTRL.VCX/cmdCallDataMemoEditForm
No retrofitting required, but if you need the ability to call frmMemoEdit in Read-Only mode, you can now call it with the new 4th parameter
Bug Fix: X3BLDTXT.SCX textbox builder had a bogus reference to loCurrentControl in the code that auto-sizes.
No retrofitting required
Enhancement: Auto-checking for dupes in grids
Added a new X3FWGRD.VCX/grdDataEntry.AlreadyInGrid() method to allow easily checking whether or not an entered value is already contained in the grid.
No retrofitting required
Enhancement: Major upgrade to data-entry grids
Added lots of new features to data-entry grids and the forms that contain them:
X3FWGRD.VCX/grdDataEntry grids "register" themselves with the form that contains them
X3FWFRM.VCX/frmDataEntry forms maintain an array property of references to registered data-entry grids
X3FWCTRL.VCX/cmdDataSave.Click() contains code calling a new method to tell all form-registered data-entry grids to execute their OnSave() code
X3FWCTRL.VCX/cmdDataAdd.Click() contains code to tell all form-registered data-entry grids to requery() themselves on Add
X3FWGRD.VCX/grdDataEntry grids that are bound to the "child" table in a one-to-many data-entry form know how to populate their foreign key(s) to the "parent" table
X3FWFRM.VCX/frmDataEntry forms handle add-on-the-fly behavior better than they used to
All this good stuff is accomplished by the following modifications:�X3FWFRM.VCX�	frmDataEntry�		iaDataEntryGrids (new property) holds object references to data-entry grids�		RegisterDataEntryGrids (new method) to populate iaDataEntryGrids �		Init() code to requery views �		Destroy() code to set THIS.iaDataEntryGrids = .NULL.�		UpdateFormOnNew (new method)�		UpdateFormOnDelete code calls UpdateFormOnNew�		UpdateFormOnCancel new code�		UpdateAddOnTheFlyRecord method to store the PK of the last-added record to �			THISFORM.iuRetVal... in THISFORM.icAddOnTheFlyAlias situation�X3FWGRD.VCX�	grdDataEntry�		new property icParentAlias�		new property icParentViewAlias�		new property icFKFieldName�		new property icParentPKFieldName�		new property icGridItemExpression�		new property ilRegisterWithForm�		changed ShellOnSaveBeforeDeleteBlankRows() to OnSaveBeforeDeleteBlankRows()�		changed ShellOnSaveAfterDeleteBlankRows() to OnSaveAfterDeleteBlankRows()�		added default code to OnSaveAfterDeleteBlankRows() to populate PK and FK�		added code to the end of Init() to register into THISFORM.iaDataEntryGrids array�	cmdDEGridAdd�		added Refresh() code�		defaulted Enabled = .f.�	cmdDEGridDelete�		defaulted Enabled = .f.�		fixed bug in Click() resulting in THIS.Enabled = .t. even after deleting the last row in the grid�		modified the code that creates the default generic message�X3FW.VCX�	grdBase�		added THIS.SetinCurrentRecno() to THIS.Refresh()�		added code to THIS.Refresh() to position the record pointer�		on the last record if eof(THIS.RecordSource)�X3FWCTRL.VCX�	cmdDataFind�		added default Click behavior to find a value & call new THISFORM.UpdateFormOnNew() method�		added new method DoTheFind() to call the Find Form�	cmdDataCancel - Click() - fixed bugs...�	cmdDataSave - Click() to save any/all DataEntryGrids�	cmdDataAdd - Click() to requery data entry grids
Retrofitting requires:
applying any X3FWGRD.VCX/grdDataEntry.ShellOnSaveBeforeDeleteBlankRows() to the new/replacement OnSaveBeforeDeleteBlankRows() method
applying any X3FWGRD.VCX/grdDataEntry.ShellOnSaveAfterDeleteBlankRows() to OnSaveAfterDeleteBlankRows()
making use of any of the new stuff
if you have existing forms with X3FWGRD.VCX/grdDataEntry grids that you don't want to use the new features (probably because you're already handling this new stuff manually), you can easily do so by not using the new properties and by disabling the auto-registration process by including the following 2 lines of code at the end of the Init() of any form inheriting from X3FWFRM.VCX/frmDataEntry: �	dimension THIS.iaDataEntryGrids[1]�	THIS.iaDataEntryGrids = .NULL.
test, test, test <g>
Bug fix: Harmless bug
Moved most of the X3FWGRD.VCX/cmdDEGridAdd.Click() to X3FWGRD.VCX/grdDataEntry.AddRow(), and fixed a (harmless) bug that resulted in the indicated grdDataEntry.inActiveColumnOnAdd not receiving focus on Add.
No retrofitting required unless you've subclassed X3FWGRD.VCX/cmdDEGridAdd.Click() code, in which case you'll have to check out the code migration described above.
New feature: Better report destination dialog subclass
New class X3FWFRM.VCX/frmReportDestinationSPF, subclasses X3FW.VCX/frmReportDestination to support additional functionality for a TO FILE destination
No retrofitting required
New Feature: GETFILE() container class
New class X3FWCTR.VCX/ctrGetFile to allow giving the user the GETFILE() dialog and displaying the selected file
No retrofitting required
New Feature: GETFILE() commandbutton class
New class X3FWCTRL.VCX/cmdGetFile to allow easy use and subclassing of the GETFILE() dialog
No retrofitting required
New Feature: GETDIR() container class
New class ctrGetDirAndFile of new .VCX X3FWCTR.VCX (containers), provides a container of one instance of X3FWCTRL.VCX/cmdGetDir and a textbox to allow the user to specify a directory + file
No retrofitting required
New Feature: GETDIR() commandbutton class
New class X3FWCTRL.VCX/cmdGetDir to allow easy use and subclassing of the GETDIR() dialog.
No retrofitting required
Version 1.31 6/17/96
New Feature: Print commandbutton
Added a <Print> command button to X3FWFRM.VCX/frmDataEntrySCADO. Custom properties and methods to come later, working in conjunction with oReports. The Click() yields an X3WINMSG() "Under construction..." for now.
No retrofitting required unless you've already added a <Print> button, in which case you have 2 options -- move your Print code to this new print button, or keep your existing stuff and simply set Visible = .F. for this new command button, on whatever form classes you have subclassed out of the framework, frmDataEntrySCADO.
Enhancement: LockScreen deletions
Wrapped the action lines of X3FWGRD.VCX/cmdDEGridDelete.Click() in a LockScreen so that ShellAfterDelete() also executes under the cover of LockScreen.
No retrofitting required.
Bug Fix: Refresh data-entry grids on Save
Added code necessary to refresh data-entry grids on <Save>. This is required because END TRANSACTION can leave the record pointer on a deleted() record if one has been deleted from the grid. Data-entry-grid refresh code added to X3FWFRM.VCX/frmDataEntry.UpdateFormOnSave() and X3FWFRM.VCX/frmDEGridFind.UpdateFormOnSave()
No retrofitting required
New Feature: New MT form example
Added a one-to-many Invoices data-entry form to the MT example application:�	MTDEINVL.SCX�	MTPKINV.SCX�	MTPKCUS.SCX
No retrofitting required
Enhancement: Better picklist grid control
Added a new property X3FWPICK.VCX/grdPicklist.ilShiftControllingColumnLeftmost to allow suppressing the default behavior of shifting the controlling column to the leftmost position when its header is double-clicked.
No retrofitting required unless you've subclassed X3FWPICK.VCX/grdPicklist.ReSort() to suppress the default behavior -- now you can just set ilShiftControllingColumnLeftMost=.F.
Enhancement: Specify ASC/DESC tags for picklists
Added the ability to define ASCENDING/DESCENDING order for index tags auto-selected by X3FWPICK.VCX/grdPicklist.ColumnXX.Header1.DblClick()
No retrofitting required unless you've subclassed to do this some other way, which code can be replaced by code in X3FWPICK.VCX/grdPicklist.SetIndexTagInfo(), in column 5 of X3FWPICK.VCX/grdPicklist.iaColumnInfo[] array
Modification: Changed each X3FWPICK.VCX/grdPicklist.Column.Movable from .F. to .T.
No retrofitting required
Bug Fix: Added code to X3FWGRD.VCX/grdDataEntry.When() to prevent a grid from getting focus if it's RecordSource is empty.
No retrofitting required
New Feature: Added auto-resize functionality to X3FWFRM.VCX/frmMemoEdit
No retrofitting required
Bug Fix: Added a THIS.UpdateFormCaption() to X3FWFRM.VCX/frmDataEntry.UpdateFormOnSave() to properly update the form caption on <Save>
No retrofitting required
Modification: cmdDataCallMemoEdit improvement
Modified the logic for auto-Enabling X3FWCTRL.VCX/cmdDataCallMemoEdit to use the alias set in cmdDataCallMemoEdit.icControlSource instead of THISFORM.icMainAlias. The change is in X3FWCTRL.VCX/cmdDataCallMemoEdit.Refresh()
No retrofitting required
Enhancement: Corrected zReadMe text in several form classes in X3FWFRM.VCX
No retrofitting required
Enhancement: Better ctrGetFile output
Improved X3FWCTR.VCX/ctrGetFile.lblDisplay.Caption to display the drive plus the rightmost accommodated characters instead of the just the rightmost accommodated characters. The change is to X3FWCTR.VCX/ctrGetFile.UpdateContainer()
No retrofitting required
Enhancement: Added support for numeric PKs to X3FWFRM.VCX/frmDataEntry.GenAndPopPK()
No retrofitting required
Modification: No Lookup Pad if ReadOnly
Added a check for THIS.ReadOnly to X3FWCTRL.VCX/txtPicklistValid.LookupPad() so that the F2 Lookup pad is not installed/removed if the textbox is has ReadOnly set to .T.
No retrofitting required
Enhancement: Various builder updates
ControlSource combobox in X3BLDTXT.SCX (textbox builder) now disables fields already used by other textboxes
Finished hooking up the Numeric InputMask Combo in X3BLDTXT.SCX (textbox builder)
Added code to <Cancel> and <OK> buttons of X3BLDTXT.SCX (textbox builder) to ResetToDefault where properties have been explicitly set to their default values
Added code to <Cancel> and <OK> buttons of X3BLDLBL.SCX (label builder) to ResetToDefault where properties have been explicitly set to their default values
No retrofitting required
New library routine: X3TAGXPR.PRG returns the index tag expression for the passed index tag name
No retrofitting required
Enhancement: txtPicklistValid uniqueness check
X3FWCTRL.VCX/txtPicklistValid has been enhanced to check for more than one of the entered item in the lookup table, and, if so, sends the user to the picklist to select the desired one.�	X3FWCTRL.VCX/txtPicklistValid.CustomValid()�	X3FWCTRL.VCX/txtPicklistValid.Init()�X3FWCTRL.VCX/txtPicklistValid.MoreThanOneHit() new method
No retrofitting required
Enhancement: Better Delete behavior
Updated delete code/behavior in data-entry forms, including data-entry grids.
X3FWFRM.VCX/frmDataEntry.DeleteAction() updated, modified to take the appropriate delete action for contained data-entry grids, based on their ilRIDelete property
X3FWFRM.VCX/frmDataEntry.ShellAdditionalDeleteAction() new method
X3FWGRD.VCX/grdDataEntry.ilRIDelete new property
No retrofitting required unless
you have data-entry grids (X3FWGRD.VCX/grdDataEntry or X3FWGRD.ctrDEGridAddDelete) containing child records whose deletion is not handled via Referential Integrity, in which case you'll want to set the ilRIDelete property to .F.
you've made modifications to X3FWFRM.VCX/frmDataEntry.DeleteAction()
Enhancement: Broader RemoteRefresh scope
The remote refresh logic is now invoked as a result of <Save>ing either an Edit OR an ADD -- previously, it was only executed after an Edit. X3FWCTRL.VCX/cmdDataSave.Click()
No retrofitting required
Enhancement: Split out method for easier subclassing
Split out the error/message management code of X3FWCTRL.VCX/cmdDataSave from the Click() to a new MessageOnFailure() method. Makes for easier subclassing of the behavior.
No retrofitting required
Modification: Reset pointer logic
Fixed <Cancel> logic to reset the record pointer properly. X3FWCTRL.VCX/cmdDataCancel.Click() revised the reset recno(THISFORM.icMainAlias) logic.
No retrofitting required
Bug Fix: Proper order of code
Moved the MODIFY WINDOW SCREEN logic in X3FW.VCX/ctrApp.SaveReset() so that it fires before restoring _Screen.Caption
No retrofitting required
Version 1.32 6/27/96
Modification: PEMSTATUS() instead of TYPE()
Replaced the TYPE() call in X3FWGRD.VCX/grdDataEntry.Init() to check for THISFORM.iaDataEntryGrids with a call to PEMSTATUS()
No retrofitting required
New Feature: Class Browser add-in to see zReadMe
New Class Browser Add-In X3CBSEEZ.PRG, allows viewing of the zReadMe method of the currently-selected class in the list
No retrofitting required
Enhancement: Subclassable method calls X3GENPK
Added a new X3FWFRM.VCX/frmDataEntry.GenPK() method to actually call X3GENPK. This way, if you want to use a different PK-generation routine, you can easily subclass and override this new method.
No retrofitting required
Enhancement: Better communicatoin between picklist form components
Added a property to frmBase and various code modifications to X3FWPICK.VCX classes to simplify and automate the messaging between the grdPicklst and the txtPicklistFind components of grid picklist forms in X3FWPICK.VCX�X3FW.VCX/frmBase�	new property ioPicklistGrid�	added code to Destroy() to destroy THIS.ioPicklistGrid�X3FWPICK.VCX/txtPicklistFind -- new class providing txtFind�X3FWPICK.VCX/grdPicklist.Column1.Header1.DblClick() -- updated code to find the txtFind instance
No retrofitting required
Enhancement: Added return value capability
Added code to X3FWCTRL.VCX/cmdDataSave.UpdateAddOnTheFlyRecord() to handle the situation where THISFORM.icMainAlias has no Primary Key index tag, in which case the default behavior is to store recno(THISFORM.icMainAlias) to THISFORM.iuRetVal for RETURNing to the calling code
No retrofitting required unless you've been handling this situation manually
Enhancement: Better picklist form compenent behaviors
Performed major surgery <g> on the classes in X3FWPICK.VCX to improve the object model and add flexibility:
The .VCX contains a new frmPick form class to make it easier to roll-your-own picklist form classes
You can now specify a value other than a Primary Key value to be returned to the code calling the picklist, via the new X3FWPICK.VCX/frmPick.icReturnValueExpression property. This is necessary when the table providing the picklist doesn't have a PK, and is demonstrated in the example MT application in MTPKINV.SCX
The code that used to be in the individual <Add>, <Select>, and <Cancel> buttons has been migrated up to the new frmPick form class, but is still called from the commandbuttons.
The code that starts the process of <Add>ing a record on the fly has been split out into 3 methods to make it easier to override/subclass.
No retrofitting required unless you've made significant changes to your frmPicklist subclasses. If you didn't override method code in your subclasses, you have no retrofitting.
Enhancement: Picklist support when no PK exists
Added logic to X3FWCTRL.VCX/txtPicklistValid.ProcessNewValue() to make use of the above enhancement to X3FWPICK.VCX/frmPicklist to allow a flexible return value from the picklist form. The X3FWCTRL.VCX/txtPicklistValid.icSelectedPrimaryKeyValue custom property was removed and replaced by the more generic icSelectedRecordValue property. Also, a new X3FWCTRL.VCX/txtPicklistValid.PositionRecnoInSeekAlias() method has been added to do the record pointer positioning, split out into a separate method to allow easier subclassing/instance-specific override.
No retrofitting required unless you've subclassed to handle non-PK behaviors manually
Enhancement: New X3SETCLS.PRG
New library routine X3SETCLS.PRG isn't rocket science but simplifies SET CLASSLIB TO. It's called in the new X3FWCTRL.VCX/txtPicklistValid.PositionRecnoInSeekAlias() method (see the item above)
No retrofitting required
Enhancement: Move to the first control on picklist selection
Added logic to set focus to the first data-entry control in X3FWFRM.VCX/frmDEGridNav2Pages and X3FWFRM.VCX/frmDEGridNavNoPages if the user "selects" the current grid row by pressing {ENTER} from the grid search textbox or by pressing {ENTER}/{DBLCLICK} from the grid. New code is in the heretofore empty methods: X3FWFRM.VCX/frmDEGridNav2Pages.pgfPageRefresh1.Page1.ctrDEFormNavGrid1.grdPicklist1.SelectionMade()�X3FWFRM.VCX/frmDEGridNav2Pages.pgfPageRefresh1.Page1.ctrDEFormNavGrid1.txtFind.KeyPress()�X3FWFRM.VCX/frmDEGridNavNoPages.ctrDEFormNavGrid1.grdPicklist1.SelectionMade()�X3FWFRM.VCX/frmDEGridNavNoPages.ctrDEFormNavGrid1.txtFind.KeyPress()
No retrofitting required unless
you added this functionality manually or
you subclassed code in either of the above methods that have been empty in the framework up to now
Modification: EOF() check
Added a check for EOF() to X3FWCTRL.cmdDataDelete.Click() after a successful DELETE. In client-server apps that retrieve one record at a time, there is no record to SKIP to.
No retrofitting required.
Modification: IF.ENDIF protection
Added IF..ENDIF protection where indicated in X3FWGRD.VCX/grdDataEntry to protect against attempting actions on a data-entry grid whose RecordSource has not been set
No retrofitting required
New Feature: View Window from Developer’s Toolbar
There is a new cmdView commandbutton on the Developer's Toolbar in X3TOOLS.VCX/tbrDevTools. It summons the View Window, allowing easy perusal of private data session information
No retrofitting required
Enhancement: Default alias
Added code to X3FWCTRL.VCX/cmdNextPrevTopBott.Init() to default THIS.icAliasInWhichToMove to THISFORM.icMainAlias
No retrofitting required, although if you use these command buttons, from now on you don't have to bother setting icAliasInWhichToMove if you use them on a form that has THIS.icMainAlias
Bug Fix: Missing Enable/disable buttons code
The zReadMe for X3FWCTRL.VCX/cmdNextPrevTopBott indicates that there is code to automatically enable/disable subclassed buttons, based on THISFORM.GetMode(). I found no such code, so I added it
No retrofitting required unless you've had to do this manually and couldn't figure out why...
Enhancement: Better return values from X3CSVORT.PRG
Added logic to X3CSVORT.PRG to return not a "V" for "View", but "R" to indicate "Remote view" and "L" to indicate "Local view". At the same time, this enhancement includes modifications to X3VVALID.PRG to make use of the extra X3CSVORT() return value.
No retrofitting required unless you've been using X3CSVORT.PRG outside the scope of the framework, where it is currently called only by X3VVALID.PRG in the course of validating bound controls.
Version 1.33 7/2/96
Bug Fix: Removed invalid forms
Removed the following forms from the MT example application. They are not really part of the example app, are not subclassed out of the framework, and are really intended only for use at our training classes:�MTFIRST.SCX�MTNODFLT.SCX�MTEVENTS.SCX, MTEVENTO.SCX, MTEVENTL.SCX�MTMODAL.SCX, MTMODAL1.SCX, MTMODAL2.SCX
No retrofitting required
Bug Fix: Information on MTCUSPES.SCX
Added a =MESSAGEBOX() to the cmdFind.Click() on MTCUSPES.SCX to let you know that this is not an example of a fully-functional form, but rather in the app to demonstrate (in classes, presentations, etc.) problems/pitfalls with pessimistic buffering
No retrofitting required
Enhancement: Reset To Default the .Height, .FontName, .FontSize, .FontBold properties of all X3FW*.VCX classes (where appropriate)
No retrofitting required
Modification: Removed non-standard RightClick code
Removed the X3FWCTRL.VCX/txtPicklistValid.RightClick() code because it didn't follow interface standards. Required adding a custom method MenuLookup().
No retrofitting required
Modification: Removed 2 classes
Removed 2 classes from X3FWCTRL.VCX:�	txtPhoneFax�	txtUSZipCode�These 2 classes really don't belong in a .VCX at this level of abstraction. All that was set in both classes was .Width and .InputMask.
No retrofitting required unless you were using either class, in which case, sorry for any inconvenience this may have caused you. BTW, in case you're not aware of it, X3TOOLS.VCX/frsTextSearch is a utility you can use to search for a particular text string like "txtPhoneFax" for times like this. Check it out...
Enhancement: Added default \<List and De\<tails hotkeys for the pages of the pageframe in X3FWFRM.VCX/frmDEGridNav2Pages.
No retrofitting required
Enhancement: Numeric support for txtPicklistValid
Added logic to X3FWCTRL.VCX/txtPicklistValid to handle the situation where the field to which you'd like to bind the textbox is numeric rather than character. See the zReadMe notes for how to set it up. Along the way, fixed a couple of bugs that only manifest themselves when filling the entire textbox. Changes were made to ProcessNewValue() and InteractiveChange()
No retrofitting required
Modification: Added a second check to the check for empty(database) in both X3PKTAG.PRG and X3PKEXPR.PRG to bail out for not only free/2x tables, but also local/remote views.
No retrofitting required
Modification: No more navigation of grid while in Edit/Add mode
Removed the feature from the grid-picklist-navigation forms X3FWFRM.VCX/frmDEGridNav2Pages, X3FWFRM.VCX/frmDEGridNavNoPages that allowed navigation of the grid while in Add/Edit mode. In the process, replaced X3FWFRM.ctrDEFormGridNav with a new one that is a subclass of X3FW.VCX/ctrBase with the 3 controls added instead of being a subclass of X3FWPICK.VCX/ctrGridPicklist.
No retrofitting required, although the substitution of the new X3FWPICK.ctrDEFormGridNav class may require repositioning the label, textbox, and grid in your subclasses/forms, in which case I apologize for any inconvenience.
Enhancement: Cancel property settings
Set X3FWCTRL.VCX/cmdDataOK.Cancel = .T. so that, when in Default mode, the form closes on pressing {ESCAPE}. Note that X3FWCTRL.VCX/cmdDataCancel has its .Cancel = .T., but VFP seems OK with the fact that only one of them (OK/Cancel) is visible at any one time.
No retrofitting required
Enhancement: New MT example form
Added a new form to the example application, MTDECUS2.SCX, demonstrates building a form "from scratch", starting with X3FWFRM.VCX/frmDataEntrySCADO.
No retrofitting required
Modification: Improved timer hierarchy
In anticipation of some future enhancements, X3FWCTRL.VCX/tmrGridPause has been renamed to tmrPause and X3FWCTRL.VCX/tmrGridPauseRefresh has been renamed to tmrPauseGridRefresh. This modification includes renaming the instance of tmrPauseGridRefresh in X3FWFRM.VCX/frmDEGridNavNoPages
No retrofitting required unless you did something to change any of the above, but since they're all in the framework that shouldn't be the case. If you've written code to message X3FWFRM.VCX/frmDEGridNavNoPages.tmrGridPauseRefresh1, you'll have to change your message references to tmrPauseGridRefresh1.
Version 1.34 7/2/96
Modification: Better Keypress handling
Added code to X3FWPICK.VCX/txtPicklistFind.KeyPress() to call its sibling grdPicklist.SelectionMade() on detecting an {ENTER} keypress. Removed X3FWFRM.VCX/frmDEGridNavNoPages.ctrDEFormNavGrid1.txtFind.Keypress() code, now that the same code is called via inheritance. Removed X3FWFRM.VCX/frmDEGridNav2Pages.ctrDEFormNavGrid1.txtFind.Keypress() code, now that the same code is called via inheritance.
No retrofitting required
Modification: Improved X3DBCPTH.PRG
Modified X3DBCPTH.PRG to make it simpler and handle more passed databases, now done by a single-parameter array.
No retrofitting required if you're not using X3DBCPTH.PRG <g>. If you are using X3DBCPTH.PRG, you'll have to modify what you pass it after the 1st (THISFORM) parameter. See the header comments of the new X3DBCPTH.PRG for examples of the new format. Sorry for any inconvenience this may have caused you -- I should have written it this way from the start, but I figured I'd make it easier to call because of not having to create an array to pass, although you can still call it without creating an array if you're only passing one database...
Enhancement: New MT example form
MTDECUS2.SCX has an example of using X3DBCPTH.PRG to "point" to different data sets. In its DataEnvironment.BeforeOpenTables(), you are presented with a GETFILE() dialog and given the opportunity to pick an MT.DBC. To actually see this work, you'll have to create at least one other MT.DBC somewhere else. You have 2 choices:
manually create MT.DBC wherever you want (you can DO MTDVDATA from another directory as long as \XLIB and \MT\DVSTUFF are in your VFP path)
run the new "Create 2 replica MT.DBCs (or refresh your existing ones) for use with MTDECUS2.SCX" option from the File menu of the MT example application
No retrofitting required
Enhancement: Better Class Browser support for X3TOOLS
Updated several classes in X3TOOLS.VCX to make sure that the ones that are actual tools can be successfully instantiated via drag-and-drop from the Class Browser
No retrofitting required
Modification: Revised several components of grdPicklist:
X3FW.VCX/frmBase -- removed custom ioPicklistGrid property�X3FWPICK.VCX�	grdPicklist�		removed .Init() code to "register" with containing form�		added .RegisterWithTextbox() method to collaborate with an instance of txtPicklistFind�		added a call to .RegisterWithTextbox() to the Init()�	txtPicklistFind�		added custom property icGrdPicklistName�		modified the code in the existing methods to use the new icGrdPicklistName�		added code to Init() to populate icGrdPicklistName �X3FWFRM.VCX�	frmDEGridNav -- added custom property ioPicklistGrid�	ctrDEFormNavGrid -- added grdPicklist1.Init() code to populate THISFORM.ioPicklistGrid
No retrofitting required unless maybe you've already started using THISFORM.ioPicklistGrid somewhere other than from the X3FWFRM.VCX/frmDEGridNav hierarchy
Bug Fix: Bad call to CheckIfOnDeletedRecord
X3FWFRM.VCX/frmDataEntry.Activate was incorrectly calling THIS.CheckIfOnDeletedRecord(), regardless of THIS.GetMode(), so this fix adds an IF..ENDIF around the existing code. Also, this modification meant that X3FWFRM.VCX/frmDEGridNav.Activate() code was redundant, so it is gone (Reset to Default) now.
No retrofitting required
Bug Fix: Bad alias for DELETE
Whenever the new X3FWFRM.VCX/frmDataEntry.DeleteAction() method was created, it contained bogus code to do the DELETE in either THIS.icMainAlias or THIS.icMainViewAlias -- this fix correctly does the DELETE in THIS.icMainAlias
No retrofitting required
Enhancement: More encapsulated delete behavior for data-entry grids
Provided better encapsulation for X3FWGRD.VCX/grdDataEntry with respect to deletions:�X3FWGRD.VCX/grdDataEntry�	inSaveRecno -- new property (protected)�	SaveRecno -- new method�	ResetRecno -- new method�	DeleteCascade -- new method�	DeleteAllRows -- added a call to .SaveRecno()�X3FWFRM.VCX/frmDataEntry.DeleteAction() -- simplified to use the above grdDataEntry enhancements
No retrofitting required
Enhancement: Smoother grid refresh
Added code to frmPicklist.Init() to refresh the grid before the user sees it to make it initialize more smoothly when the record pointer is positioned somewhere other than at the top
No retrofitting required
Enhancement: tbrDevTools overhaul
X3TOOLS.VCX/tbrDevTools got a badly-needed overhaul, although there yet remain features to come in the future
No retrofitting required
Modification: Expanded CheckIfOnDeletedRecord
Overhauled/expanded the X3FWFRM.VCX/frmDataEntry.CheckIfOnDeletedRecord() scenarios�X3FWFRM.VCX/frmDataEntry�	CheckIfOnDeletedRecord() -- modifications (see comments)�	CancelAction() -- new method, code is from the old X3FWCTRL.cmdDataCancel.Click()�X3FWCTRL.VCX/cmdDataCancel.Click() -- code moved to frmDataEntry.CancelAction()
No retrofitting required
Modification: Modified the way object references to the grid are handled from the commandbuttons in X3FWGRD.VCX
No retrofitting required
Modification: Better OnTimeoutReached behavior
Modified the code in .OnTimeoutReached() method of forms in X3FWFRM.VCX to make use of the new .CancelAction() method�	X3FWFRM.VCX/frmDataEntry.OnTimeoutReached()�	X3FWFRM.VCX/frmDataEntrySCADO.OnTimeoutReached()
No retrofitting required
Bug Fix: No refresh on Cancel
In some situations, pages weren't being refreshed properly on <Cancel>ing out of an Edit. The fix was simple, one line of code in X3FW.VCX/pgfPageRefresh.Refresh()
No retrofitting required
Modification: MaxButton/MinButton settings
In conjunction with the modifications the .MaxButton and .MinButton properties of forms in Level1�	X3FW.VCX/frmStandby.MaxButton = .F., protected�	X3FW.VCX/frmStandby.MinButton = .F., protected
Modification: Check for valid form container
Put PEMSTATUS() to use to modify bound controls to properly use it to suppress the InteractiveChange/BoundControlsInteractiveChange behavior of controls to enter Edit "mode" when those controls are not used on forms from the X3FWFRM.VCX/frmDataEntry hierarchy:�X3FWCTRL.VCX/cboDropDownBound.InteractiveChange(), ProgrammaticChange()�X3FWCTRL.VCX/chkBound.InteractiveChange(), ProgrammaticChange()�X3FWCTRL.VCX/edtBound.InteractiveChange(), ProgrammaticChange()�X3FWCTRL.VCX/opgBound.InteractiveChange(), ProgrammaticChange()�X3FWCTRL.VCX/txtBound.InteractiveChange(), ProgrammaticChange()
No retrofitting required
HEADS UP
Please be advised that a near-future revision is likely to include major surgery on several of the form classes, most notably X3FWFRM.VCX/frmDEGridNav2Pages. Since these changes will alter the controls and containers in the form classes involved, I plan to:
include full retrofitting details (I'll have to make the changes in 3 apps myself...), perhaps writing retrofitting utility .PRGs where appropriate
designate certain classes as "obsolete" but leave them in the framwork for at least one revision, in order to give you time to migrate to the new classes that will be permanently supported. You'll also have the option to copy the "obsolete" classes from their current .VCXs to ones of your making, updating the ClassLoc field to point to these new outside-the-framework .VCXs should you want to keep them around
Please note that these changes will not mean losing any existing functionality.
Version 1.35 7/29/96
Enhancement: Better error trapping on row rule failure
Added logic to X3FWCTRL.VCX/cmdDataSave.MessageOnFailure() to trap for the table whose row rule was actually violated if the Save fails for row rule violation error #1583. Previously, THISFORM.icMainAlias was used, but that can frequently be bogus.
No retrofitting required
Bug Fix: Faulty RECNO() repositioning in data-entry grids
Fixed several places in the method code of X3FWGRD.VCX/grdDataEntry where the RECNO() was not being repositioned properly, most noticeable in the Grid.RecordSource being EOF() subsequent to an unsuccessful <Save> in a one-to-many form when the failure was due to a violated row rule of a child table
No retrofitting required
Enhancement: Easier subclassing of the Save process
Changed the way the individual processes are called in X3FWCTRL.VCX/cmdDataSave.Click() to allow more flexibility in subclasses and to provide for easier custom messaging on failure of the individual processes
No retrofitting required unless you have customized any of the following:�X3FWCTRL.VCX/cmdDataSave�	Click() �	ShellBeforePreSave() �	PreSave() �	ProcessDataEntryGrids() �	ShellAfterPreSave()
New Feature: Send the user to empty required fields
On pressing <Save>, X3FWCTRL.VCX/cmdDataSave checks to see if THISFORM contains any controls whose .ilRequired=.T. but have no data entered in them at the moment. If any are found, focus is set to the first one (in tab order), a message is displayed to the user, and the <Save> is aborted.
X3FWCTRL.VCX/cmdDataSave�	Click() -- modified�	CheckRequiredFields() -- new method�	ShellBeforePreSave() -- modified�	PreSave() -- modified�	ProcessDataEntryGrids() -- modified�	ShellAfterPreSave() -- modified�X3FW.VCX/frmBase�	CheckRequiredFields() -- new method�	ProximityLabel() -- new method�	CustomSetFocus() -- new method
No retrofitting required unless you have already customized any of the above previously-existing methods
Bug Fix: Fixed a bug in X3TAGXPR.PRG that returned the wrong information if the 2nd alias parameter is passed
No retrofitting required
New feature: Selectable QueryUnload behaviors
In this revision, Level 1 includes a new X3FW.VCX/cusForms.inQueryUnloadBehavior protected property, with slightly-revised .ReleaseAllForms() code. In X3FWFRM.VCX/frmDataEntry.QueryUnload() there is new code that takes one of 3 actions based on oForms.inQueryUnloadBehavior, so you can select from one of 3 built-in behaviors.
No retrofitting required, but the default behavior is different from the (only) one in previous versions.
Modification: No “?” icon for MESSAGEBOX()
According to The Windows Interface Guidelines for Software Design, the "?" icon is no longer recommended for use in =MESSAGEBOX() dialogs. It is no longer specified in calls to X3WINMSG.PRG in the following methods, the only places in the framework where the "?" icon was specified�X3FWCTRL.VCX/cmdDataDelete.UserConfirmation() �X3FWGRD.VCX/cmdDEGridDelete.UserConfirmation()
No retrofitting required
Enhancement: New sandwich methods
Added the following Before../After.. methods so that Before/After custom methods come in matched pairs:�X3FWCTRL.VCX/cmdDataAdd.ShellBeforeAppendBlank()�X3FWGRD.VCX/grdDataEntry.ShellBeforeAppendBlank()
No retrofitting required
Modification: Set
 X3FWFRM.VCX/frmUserMaintenance.pgfPageRefresh1.Page2.txtUsr_Password.ilRequired = .T.
No retrofitting required
New Feature: Single-Instance forms
See Level 1 revision history for more details on this one, but the bottom line is that oForms.DoForm() now checks to see if there is an instance of the requested form already running. If so, its (new) .ilAllowMultipleInstances property is checked, and if it doesn't allow multiple instances, it is simply made the current form. In the MT example app, the SKIP FOR conditions on all the Reference menu form selections have been removed since they are no longer needed (the forms are simply activated as if they had been selected from the Window menu), and the multiple-instance forms have had their new .ilAllowMultipleInstances property set to .T.:�MTDECUS.SCX�MTDECUS1.SCX�MTDECUS2.SCX�MTDEINVL.SCX�Form classes in X3FWFRM.VCX have had their zReadMe updated where appropriate.
No retrofitting required
Modification: common page refresh code
This modification is in parallel with the one in this version in Level 1, where X3FW.VCX/pgfPageRefresh and X3FW.VCX/grdBase had Common.. methods added (see the revision history in Level 1 for more details).
X3FWCTRL.VCX�	xtBound.GotFocus() -- reset to default because the update to X3FW.VCX/txtBase.GotFocus() now handles it globally
	cboDropDownBound.GotFocus() -- ditto�	chkBound.GotFocus() -- ditto�	edtBound.GotFocus() -- ditto �	opgBound.When() -- ditto
Since the only GotFocus() code I could find in X3FWCTRL.VCX/xxxBound class definitions did the same thing as the new generic code at the xxxBase level, there should be no retrofitting required. Unless, of course, you modified the X3FWCTRL.VCX/xxxBound.GotFocus() methods directly (instead of creating your own subclasses) and have code there that you need to preserve.
Bug Fix: X3FWFRM.VCX/frmDataEntry.CancelAction() assumed a valid THIS.inSaveMainAliasRecno when it could in fact be 0/eof().
No retrofitting required
Bug Fix: MTDECUS2.SCX caused a row rule violation on <Add> because of attempting to move the record pointer in CUSTOMERS with a blank record just appended to the buffer.
No retrofitting required
Enhancement: Auto set-focus to first active control on <Add>
Added logic to X3FWFRM.frmDEGridNav2Pages.cmdAdd.Click() to set focus to the first active control in Page2 subsequent to selecting the <Add> button. Beware that it's a bit of a kludge.
No retrofitting required
Enhancement: Win95 interface
In parallel with a Level 1 enhancment, Level 2 received a Win95 interface facelift. Along the way, I changed the <Select> commandbutton X3FWPICK.VCX/cmdPicklistOK to <OK>, to conform with the interface standard for this kind of dialog.
Retrofitting requires visiting your subclasses and .SCX-based forms for some aesthetic touch-ups. Hint: an easy way to find out if you've got some controls lurking out there that have an explicit .Height (or .FontSize) set that you'd like to Reset to Default is to open the .VCX/.SCX in the Class Browser, select View Class Code and do a CTRL+F text search on ".Height" to find only those objects that have an explicit .Height set at that level.
Modification: tbrDevTools revisions
Made some slight revisions to X3TOOLS.VCX/tbrDevTools, including the addition of Buffering Type to the list of info returned for an Alias selected from the Work Areas dropdown
No retrofitting required
Enhancement: Main menu update
In parallel with a Level 1 enhancement, I modified the MTMAIN.MNX system menu to replace the System pad with a Tools pad.
No retrofitting required.
Enhancement: SDT integration
In parallel with a Level 1 enhancement, I included code in MTMAIN.PRG, in the ctrMTApplication class definition to show how SDT could be hooked into the framework. If you have SDT and want to give it a try, be sure to check the path and classlib stuff before you set the IF .F. to IF .T., to make sure those items are modified to match your system.
No retrofitting required.
Version 1.4 8/19/96
Bug Fix: Changed the hotkey for the \<Reference menu pad to Re\<ference
No retrofitting required
Bug Fix: Improved BACKSPACE behavior
Fixed the {BackSpace} behavior in the textbox search input control for all our grid-picklist containers and forms. Previously, {BackSpace} erasing the only character in the textbox didn't do a SEEK(), and {BackSpace} when the textbox is empty moved backward one control; now you remain in the textbox.�X3FWPICK.VCX/grdPicklist.SeekValue()�X3FWPICK.VCX/txtPicklistFind.KeyPress()
No retrofitting required
Bug Fix: Added a test for an empty base table to X3VVALID.PRG to prevent crashes when using a txtBound textbox on view fields based on expressions
No retrofitting required
Enhancement: In anticipation of implementing the "Develop locally, deploy remotely" philosophy, our standard for naming views changed from LV_ (local) and RV_ (remote) to V_ for either type of view. Changes made throughout the MT example app and in the default V_USERS view, which is used in X3FWFRM.VCX/frmUserMaintenance.
Also, X3FWDATA.PRG has been modified to drop the initial "L" from the fields of the USERS view. For those of you who have a copy of our MaxTech programming standards, I have updated PRGSTD30.DOC accordingly.
No retrofitting required unless you have a form based on X3FWFRM.VCX/frmUserMaintenance which has been modified to use the V_ prefix. You have 2 choices:
1- Update your existing LV_USERS view to be named V_USERS
2- Leave your existing LV_USERS view named LV_USERS, in which case you'll have the following modifications to make to your xxDEUSR.SCX:
	- change Form.icMainViewAlias property to LV_USERS
	- change Form.ShellRequeryMainViewAlias =REQUERY() line to pass THIS.icMainViewAlias instead of an explicit alias:
=REQUERY(THIS.icMainViewAlias)
	- enter the ControlSource for bound controls on Page2 to the appropriate LV_USERS.Usr_Fieldname. The ControlSource is currently blank (set in each Control.Init()), and you'll have to override the default use of V_USERS by entering the one for your LV_USERS view.
For an application in production, I'd guess option #1 above would be easier. But if this update requires synching up a name change from LV_USERS to V_USERS at client sites, option #2 may be better. Don't forget, you can use X3TOOLS.VCX/frsTextSearch (if you have Visual MaxFrame Professional) to hunt down any "LV_" references you need to update.
Enhancement: New SetExprProps() method put to use
In conjunction with the (VM) addition of the new SetExprProps() method to all base classes, setting the InputMask for all the textboxes in X3FWFRM.VCX/frmUserMaintenance is now done in each textbox.SetExprProps().
No retrofitting required.
Enhancement: Page-refresh simplification
See the VM revision history for more information, but the enhancement to X3FW.VCX/pgfPageRefresh to eliminate cutting-and-pasting Page.Activate() and Page.Refresh() code by AddObject()ing an instance of X3FW.VCX/txtPageRefresh() to each page required a modification to X3FWFRM.VCX/frmDEGridNav2Pages:
.CommonPageRefresh() code was moved to .CommonPageActivate()
No retrofitting required unless you've got some special code in either method in subclasses. Also, if you have forms built from X3FWFRM.VCX/frmDEGridNav2Pages that have >2 Pages in the pageframe, you'll need to remove the code that used to have to be pasted into each Page>2.Activate() and each Page>2.Refresh(). If that one line is all there is, you can just Reset to Default, as I did in MTDECUS1.SCX.
New Feature: Auto-add a row to grids
X3FWGRD.VCX/grdDataEntry grids now allow the user to auto-add a row by pressing {DNARROW} while on the last row of the grid (the default VFP5 behavior)�X3FW.VCX/grdBase.CommonColumnControlLostFocus() -- new empty method�X3FW.VCX/txtBase.LostFocus() -- added code to automate this behavior�X3FW.VCX/txtBase.KeyPress() -- added code to automate this behavior�X3FW.VCX/spnBase.LostFocus() -- added code to automate this behavior�X3FW.VCX/spnBase.KeyPress() -- added code to automate this behavior�X3FWGRD.VCX/grdDataEntry.CommonColumnControlLostFocus() -- added code�X3FWGRD.VCX/grdDataEntry.AllowAddNew -- new property�X3FWGRD.VCX/grdDataEntry.inLastRecno -- new protected property�X3FWGRD.VCX/grdDataEntry.SetLastRecno() -- new method �X3FWGRD.VCX/grdDataEntry.AddRow() -- modified�X3FWGRD.VCX/grdDataEntry.zReadMe() -- updated�X3FWGRD.VCX/grdDataEntry appropriate methods have a call to SetLastRecno() inserted
No retrofitting required unless you want to take advantage of this feature. If so, read the X3FWGRD.VCX/grdDataEntry.zReadMe() for what you'll have to set.
Bug Fix: Improper Refresh()
X3FWFRM.VCX/frmMemoEdit.Action() called the .Refresh() of the calling form, but that can sometimes lead to erroneously dirtying the buffer of a cursor in that form. Replaced that call with a call to .RefreshFormControlsOfBaseClass("COMMANDBUTTON"), since the only reason for the call is to refresh the <Save> and <Cancel> commandbuttons. As an added bonus, the selective refresh is probably faster...
No retrofitting required
Bug Fix: No alias() reset
X3FWFRM.VCX/frmMemoEdit attaches itself to the calling form's private data session, and didn't save/reset the current ALIAS(), in some scenarios causing bad things on returning control to the calling form. This revision adds an icSaveAlias (protected) property and saves/resets in Init() and Unload().
No retrofitting required
Modification: Renamed/redefined MT classes
Renamed (and redefined, etc...) all MTFW.VCX classes that used to be xxxMTDefault. That was an old naming convention I used a long time ago. In the process, I removed the following classes from MTFW.VCX because I guess I put them in originally expecting to use them, but I want the MT*.VCXs to reflect classes that are actually used in the application.�cmdMTDefault�edtMTDefault�txtMTDefault
No retrofitting required
Enhancement: User rights
As noted in the VM revision history above, this version adds a new Usr_Rights field to the USERS table. This change required modifying X3FWFRM.VCX/frmUserMaintenance, which now includes a combobox for maintaining the Usr_Rights field.
No retrofitting required (assuming you've modified your USERS table and V_USERS view, as outlined in the VM revision history above) unless your needs for this "Rights" combo go beyond what we've included here. If that is the case, in your app-specific instance of X3FWFRM.VCX/frmUserMaintenance, you can modify the appropriate PEMs of the cboUsr_Rights accordingly.
However, if you need more granular settings/control of user-security, we recommend leaving this mechanism in place, and extending the 3 basic Rights setting via a "RIGHTS" table containing columns for user, item, setting, etc., which table could be maintained on a page added to the X3FWFRM.VCX/frmUserMaintenance form.
Enhancement: User security
Put the above USERS.Usr_Rights attribute to work, to remove Supervisor-only menu options when a non-Supervisor logs in. See the subclassed AfterInstallMenuMgr() method in the ctrMTApplication in MTMAIN.PRG
No retrofitting required
Enhancement: Examples of cboBase enhancements
In VM revisions for this version, you read about the enhancements to cboBase. For an example, see MTCTRL.VCX/cboMTLookups and MTDEUSR.SCX in the example application. MTDEUSR.SCX has 2 (visually-identical) combos, one demonstrating a typical array-based combo, the other is based on an Alias for its RowSource. The zReadMe of MTDEUSR.SCX has extensive explanations.
No retrofitting required
Enhancement: Improved (slightly) the clipboard output from X3TOOLS.VCX/frsTextSearch.
No retrofitting required
Bug Fix: Incorrect Width set
Fixed bug in X3FWFRM.VCX/frmReportDestinationSPF that resulted in a neato squished form on <Cancel>ing out of the GetFile() dialog with no file displayed in the display label
No retrofitting required
Enhancement: Non-application-specific .VCX
Added a new class MTNONAPP.VCX to store classes that are used in the MT example application but are not really part of a "real" MT app. MTFWFRM.VCX classes all install a <zReadMe...> button (MTNONAPP.VCX/cmdInfo) to each form as it loads, in the upper-right corner. The commandbutton calls MTNONAPP.VCX/frmInfo to display the zReadMe of the current form. A future revision will probably replace the <zReadMe...> button with a selection via a shortcut menu.
No retrofitting required
Enhancement: Use found for EmptyPicklist()
Back in v1.3, we removed the code we used to have in X3FWFRM.VCX/frmPick.EmptyPicklist(). This works fine as long as the picklist form in question has an <Add> commandbutton, but the <Add> commandbutton/functionality is selectable. If there is no <Add> button and there are no records in the picklist grid, it makes no sense to send the user to it, so we now have generic EmptyPicklist() code invoked only when there is no <Add> button in the picklist form.
No retrofitting required.
New feature: New form example
Added a new Customers data-entry form, MTDECUS3.SCX (note that the existing MTDECUS1.SCX is renamed MTDECUS2.SCX and the existing MTDECUS2.SCX is renamed MTDECUS9.SCX) which includes an <Invoices...> commandbutton to allow calling the Invoices form from the Customers form, with a resulting filter of the Invoices form to only show invoices for the current customer on the Customers form. Note that the <Find...> commandbutton on the Invoice form respects the filter condition, the MTPKINV picklist form only shows invoices for that customer. Changes include:�MTDECUS3.SCX -- new form�MTPKINV.SCX -- modified setup code in the Init() �MTDEINVL.SCX -- modified setup code in the Init() to handle the filter�MTDEINVL.SCX -- modified setup code in the Init() to set a special Caption�MTDEINVL.SCX -- modified cmdFind.Click() code to pass on the filter�DVSTUFF\MTDVDBC.PRG -- modified the V_INVOICESPICKLIST view definition to allow for "filtering" via a parameter
No retrofitting required
New Feature: User security
User-security at the control level for bound controls and commandbuttons. Elsewhere you've no doubt read how the new USERS.Usr_Rights field is put to use. Here's the VMP implications:�X3FWCTRL.VCX/edtBound.Init() -- added code to ignore THIS.inRequiredBackColor if THIS.ReadOnly�X3FWCTRL.VCX/txtBound.Init() -- added code to ignore THIS.inRequiredBackColor if THIS.ReadOnly�X3FWCTRL.VCX/cmdData.SetUserSecurity() -- established default behavior�X3FWCTRL.VCX/cmdDataSubClasses...SetUserSecurity() -- overrode where necessary�X3FWCTRL.VCX/cmdDataSubClasses.Refresh() -- added code to respect THIS.SetUserSecurity()�X3FWGRD.VCX/cmdDEGrid.SetUserSecurity() -- established default behavior�X3FWGRD.VCX/cmdDEGridAdd.Refresh() -- added code to respect THIS.SetUserSecurity()�X3FWGRD.VCX/cmdDEGridDelete.Refresh() -- added code to respect THIS.SetUserSecurity()�X3FWPICK.VCX/frmPicklist.Init() -- added code to remove the <Add> button if THIS.ilReadOnly�X3FWPICK.VCX/txtPicklistFind.SetUserSecurity() -- overrode default behavior via NODEFAULT
NOTE: SetUserSecurity() methods are set up for "hooking" runtime variations of the security behavior; I figure it's a natural for the hook pattern. For a couple of examples, see X3FWFRM.VCX/frmUserMaintenance and MTDEUSR.SCX. The User Rights and User Status combos and labels are "hooked" to a hook object in the new MTHOOKS.VCX that renders them invisible, instead of the default behavior of disabled.
No retrofitting required
Bug Fix: Fixed a couple of environmental bugs in MTRPCLAS.PRG; I hadn't run it since making changes to app info tables, etc.
No retrofitting required
Enhancement: In coordination with modifications in Visual MaxFrame, revamped our treatment of the requerying and refreshing of pageframe pages and data-entry grids.
X3FWFRM.VCX/frmDataEntry.RegisterDataEntryGrids() -- added a second column to iaDataEntryGrids. Column 2 contains a string indicating whether the DE grid is contained directly on the form or by a pageframe on the form. All references to iaDataEntryGrids updated throughout VMP�X3FWFRM.VCX/frmDataEntry.UpdateFormOnNew() -- modified the code to only requery data-entry grids at the form level (not in pages of pageframes)�X3FWFRM.VCX/frmDEGridNav2Pages.SetinCurrentRecno() -- added code to reset the page refresh indicator whenever the recno() changes�X3FWFRM.VCX/frmDEGridNav2Pages....CommonPageActivate() -- simplified the ShellRequeryMainViewAlias() determination�X3FWFRM.VCX/frmDEGridNav.UpdateFormOnCancel() -- commented out the code that forces the ActivePage = 1 on Cancel�X3FWFRM.VCX/frmDEGridNav.UpdateFormOnSave() -- commented out the code that forces the ActivePage = 1 on Save�X3FWGRD.VCX/grdDataEntry.ilPageAutoRequery -- new property determining what happens in .OnPageActivate()�X3FWGRD.VCX/grdDataEntry.OnPageActivate() -- new method to call .ShellRequery() when the grid is on a page that needs manual refreshing�X3FWPICK.VCX/grdPicklist...When() -- moved this old code technique to .GotFocus()�X3FWPICK.VCX/grdPicklist.zReadMe() -- updated to reflect this change�MTDECUS4.SCX -- new form that I wrote to test all the above
No retrofitting required unless you've already got some kludge code out there to handle manually some of what is now automatically.
Version 1.5 9/3/96
New Feature: Error handling (see VM revision history).
X3FWFRM.VCX/frmDataEntry.QueryUnload() -- added another CASE
X3FWFRM.VCX/frmErrorLog -- new class for presenting the error log to the supervisor
No retrofitting required
Enhancement: Added code to X3FWFRM.VCX/frmDEGridNav2Pages.pgfPageRefresh1.Page1.Deactivate() to clear the input search textbox for the search grid once the user changes to another page.
No retrofitting required.
Enhancement: Added code to X3FWPICK.VCX/grdPicklist.ColumnX.Text1 to move to the top/bottom of the list by pressing {HOME}/{END} while in the grid picklist
No retrofitting required unless you have picklists into whose columns you've added your own controls, in which case you'll need to modify the Column.Control.KeyPress() code as described in X3FWPICK.VCX/grdPicklist.zReadMe().
Bug Fix: X3FWCTRL.VCX/cmdGetFile.Click() had some bogus logic in it for having the user acknowledge before overwriting an existing file.
No retrofitting required
Bug Fix: X3REPORT.PRG didn't have the correct STRTRAN() logic for correctly creating the lcWhere string (as returned by default from X3FWFRM.VCX/frmReportDestinationSPF) for reports TO FILE.
No retrofitting required
Enhancement: Added the necessary components to make searching in our picklist grids smoother as the user enters the string in the search input textbox. The actual SEEK() in the grid picklist is only performed once the user has paused from typing in the string for .2 seconds.
X3FWCTRL.VCX/tmrPauseKeystrokes -- new class
X3FWPICK.VCX/txtPicklistFind.Init() -- new code to add an instance of tmrPauseKeystrokes to THIS.PARENT
 .SeekInGrid() -- new method to split out the actual work from InteractiveChange()
 .InteractiveChange() -- modified to communicate with THIS.PARENT.tmrPauseKeystrokes1
No retrofitting required
Bug Fix: Fixed numerous bugs in the label and textbox builders, X3BLDLBL.SCX and X3BLDTXT.SCX
No retrofitting required
Bug Fix: Removed some user-security hooking for the Usr_Rights controls on the User Maintenance form class becuase I had inadvertently hooked to an object that is MT-specific.
X3FWFRM.VCX/frmUserMaintenance.cboUsr_Rights.ShellAdditionalInit() -- Reset to Default
 .lblUsr_Rights.ShellAdditionalInit() -- Reset to Default
 .cboUsr_Rights.Init() -- added missing code to default the ControlSource
MTDEUSR.SCX/cboUsr_Rights.ControlSource -- set in the Properties Sheet
 .ShellAdditionalInit() -- hooked in user security
 lblUsr_Rights.ShellAdditionalInit() -- hooked in user security
No retrofitting required
Enhancement: New X3FWPPOP.VCX/cusPushPopDir class definition
No retrofitting required
Enhancement: Modified X3BLDTXT.SCX (textbox builder) to simplify things when the form's data environment contains views
No retrofitting required
Bug Fix: Went back to a previous behavior on <Cancel> from X3FW.VCX/frmDEGridNav forms, setting focus to page 1, to fix a bug leaving blank bound controls.
No retrofitting required.
New Feature: New X3FWCTRL.VCX/lstBound class
No retrofitting required.
New Feature: New X3FWFRM.VCX/frmGetInputItem class
No retrofitting required.
New Feature: New class X3FWLIBS.VCX/cusControlSize
No retrofitting required
Enhancement: Took care of more nagging, unresolved data-entry-grid plus pageframe interactions. This one is too hard to explain... trust me <g>. If I can remember right, here's what I changed:
X3FWFRM.VCX/cmdDataAdd.Click() -- moved the data-entry-grid-refresh code out (it didn't really belong there anyway) to X3FWFRM.VCX/frmDataEntry.UpdateFormOnAdd()
X3FWFRM.VCX/frmDataEntry.UpdateFormOnAdd() -- added code to take care of requerying data-entry grids, respecting whether they are contained on the form or a page (showing or not) of a pageframe
 .RegisterDataEntryGrids() -- added a 3rd column of information to make it easier to send messages to the ultimate page containing a specific data-entry grid
X3FWFRM.VCX/frmDEGridNav.UpdateFormOnCancel() -- improved the behavior, eliminating the arbitrary forcing of focus to Page1
X3FWGRD.VCX/grdDataEntry.ShellRequery() -- removed the need to receive a parameter, now just test for THISFORM.GetMode()="ADD"
 .zReadMe() -- removed the instructions to receive the old tlAdding parameter
MTDEINVL.SCX/...ShellRequery() -- removed the lparameters statement, tested for THISFORM.GetMode()="ADD" instead
MTDECUS4.SCX/...ShellRequery() -- removed the lparameters statement, tested for THISFORM.GetMode()="ADD" instead
MTDELKUP.SCX/...ShellRequery() -- removed the lparameters statement, tested for THISFORM.GetMode()="ADD" instead
Retrofitting requires visiting the ShellRequery() method of all your data-entry grids (inheriting from X3FWGRD.VCX/grdDataEntry) to:
1- remove the lParameters statement
2- change the "IF tlAdding" test to IF THISFORM.GetMode()="ADD" and visiting any calls you have to ShellRequery(<lParam>) that pass a parameter.
Hint: use X3TOOLS.VCX/frsTextSearch to find all references to ".ShellRequery(".
Enhancement: SDT integration
Finished 3rd Party Tool support for SDT. Visual MaxFrame Professional adds a degree of flexibility not in previous versions. You can still hook to SDT the way I introduced a couple of versions ago, but that was an all-or-nothing proposition -- if SDT had a method in X3FWLIBS.VCX/cusDBCSvc, the hook invoked the SDT method, and you could never have some methods from Visual MaxFrame and others from SDT. Now you can mix and match, via a new X3FWMISC.VCX/cusMapSDT class definition. See its zReadMe for the details, and the DEFINE CLASS ctrMTApplication in MTMAIN.PRG for an example implementation (the 2nd CASE in SetupExternalTools). I have one more possible enhancement in mind -- objects that handle the installation of each supported 3rd Party Product external tool. Such objects would basically execute the code you find in MTMAIN/ctrMTApplication.SetupExternalTools(). If I decide to implement it...
I also plan to do something similar with Steven Black's INTL Toolkit, although that's not looking terribly promising between now and the release of Visual MaxFrame Professional, about the middle of October.
No retrofitting required.
Enhancement: Modified X3FWFRM.VCX/frmDEGridNav2Pages to automatically disable pages if there are no records in the navigation grid (the table being maintained is empty) and enable them again when appropriate.
The new code is in the pgfPageRefresh1.Refresh() and cmdAdd.Click()
No retrofitting required.
Enhancement: Modified the textbox used to enter search criteria for picklist grids to disable it when there are no records in the grid with which it is associated.
X3FWPICK.txtPicklistFind.Refresh()
No retrofitting required.
Version 1.51 9/9/96
Enhancement: Added a new class txtLabel to X3FWCTRL.VCX for use as a "bound/refreshable" label:
X3FWCTRL.VCX/txtLabel -- new class
VMFWCTRL.VCX/txtVMLabel -- new class
VMDECUS.SCX -- replaced the old lblCusState with a new txtCusState
VMDECUS2.SCX -- replaced the old lblCusState with a new txtCusState
VMDECUS3.SCX -- replaced the old lblCusState with a new txtCusState
VMDECUS4.SCX -- replaced the old lblCusState with a new txtCusState
VMDECUS9.SCX -- replaced the old lblCusState with a new txtCusState
VMCUSPES.SCX -- replaced the old lblCusState with a new txtCusState
VMDEINVL.SCX -- replaced the old lblInv_Total with a new txtInv_Total
No retrofitting required, although if you have any objects lying around based on the old lblBound, you can change them to textboxes from this class, and they'll refresh properly in VFP5.0.
Enhancement: VFP5 Page focus
In coordination with the VM enhancment to move focus off pageframe pages on Activate, since controls' UIEnable doesn't fire when a pageframe is activated the very first time, had to add code to X3FWFRM.VCX/frmDEGridNav2Pages.Init() to send focus to the Search For input textbox when the form is first initialized.
No retrofitting required
Modification: In coordination with the VM modification to remove .SetFocus() calls that don't work in VFP5, modified
X3FWPICK.VCX/frmPicklist.SetRecordPointerOnAdd()
X3FWPICK.VCX/txtPicklistFind.SeekInGrid()
X3FWPICK.VCX/grdPicklist.SeekValue()
No retrofitting required
Modification: For VFP5 compatibility, added bracket code to X3FWFRM.VCX/frmDEGridNav2Pages.cmdAdd.Click()
No retrofitting required
Bug Fix: X3FWCTRL.VCX/txtPicklistValid.InteractiveChange() needed an extra condition in the IF that tests for a full textbox. Caused the incremental search to quit working in certain situations.
No retrofitting required.
Enhancement: Hotkey for grid commandbuttons
Added a hotkey for the <Add> commandbutton used for data entry grids. Had to change the Captions for the 2 data-entry grids to "Add \<Item" and "Delete Item" to have an available unused \<I hotkey. I also like the fact that adding the "Item" to each commandbutton helps differentiate child/grid buttons from parent/form Add/Delete buttons.
No retrofitting required.
Version 1.52 9/13/96
New Feature: New X3DTSRCH.PRG library routine to fire up an instance of X3TOOLS.VCX.
No retrofitting required.
Modification: see Visual MaxFrame revision history for the details on the Grid.AllowAddNew/.ilAllowAddNew update.
No retrofitting required.
Bug Fix: X3FWCTRL.VCX/txtPicklistValid.InteractiveChange() never handled a {Delete} keypress at all. This fix adds some code improvement code.
No retrofitting required.
Enhancement: Added a <Copy to Clipboard> commandbutton to X3FWFRM.VCX/frmEventLog. ...oh, and I added some .Click() code, too...
No retrofitting required
New feature: New X3FWMISC.VCX/cusShortcutMenu "base" shortcut menu class. PLEASE NOTE THAT THIS CLASS IS UNDER CONSTRUCTION. Lots of stuff works, but some may not. More details/explanations in future releases.
No retrofitting required.
Modification: I don't know why I didn't do this before, but I moved repetitive code from the Text1.KeyPress() in each column of X3FWPICK.VCX/grdPicklist to a new CommonTextboxKeypress() method.
X3FWPICK.VCX/grdPicklist.CommonTextboxKeypress() -- new method
X3FWPICK.VCX/grdPicklist.ColumnX.Text1.KeyPress() -- modified
No retrofitting required unless you have picklist forms in which you added your own column controls and so followed the grdPicklist.zReadMe instructions to copy this code to the KeyPress():
LPARAMETERS nKeyCode, nShiftAltCtrl
IF nShiftAltCtrl = 0
 DO CASE
 CASE nKeyCode = 13 &&& ENTER
 THIS.PARENT.PARENT.SelectionMade()
 CASE nKeyCode = 1 &&& HOME
 select (THIS.PARENT.PARENT.RecordSource)
 go top
 CASE nKeyCode = 6 &&& END
 select (THIS.PARENT.PARENT.RecordSource)
 go bottom
 ENDCASE
ENDIF
All such manually-pasted code should be replaced with the following:
*
* Process ENTER, HOME, and END keystrokes
*
LPARAMETERS nKeyCode, nShiftAltCtrl
THIS.PARENT.PARENT.CommonTextboxKeypress(nKeyCode,nShiftAltCtrl)
Note: I've just checked two mid-sized applications, and had no such retrofits to make because I added no other controls to the grid columns. I used X3DTSRCH, searching on "CASE nKeyCode = 1" to make sure. The only hits I got were in X3FWPICK.VCX and these comments in X3FWMAIN.PRG.
Enhancment: Overhauled X3FWPICK.VCX/grdPicklist to more readily accommodate views and cursors as the RecordSource.
.CreateIndexTags() -- new method
.CreateIndexTagsSetup() -- new method
.Column1RequiredTagName() -- new method
.SetOrderTo() -- new method
.Init() -- modified to include the above new methods
.zReadMe() -- modified accordingly
See VMPKINV.SCX, whose old Form.Load() code has been moved to grdPicklist.CreateIndexTags().
No retrofitting required
Version 1.6 10/05/96
Bug Fix: I clearly need more sleep. In the last revision of v1.51 I added the X3FWPICK.VCX/grdPicklist.Column1RequiredTagName() method, but the line
 set order to (lcTag) in (THIS.RecordSource)
should be (and is fixed herein)
 THIS.iaColumnInfo[1,3] = lcTag
No retrofitting required
Modification/bug fix: Added an IN (THIS.RecordSource) to the SET ORDER TO in X3FWPICK.VCX/grdPicklist.SetOrderTo().
No retrofitting required
Modification: Modified the default Grid.Refresh() behavior, particularly when the grid is a data-entry grid whose RecordSource is the target of a SET RELATION.
X3FW.VCX/grdBase.Refresh() -- slightly modified
X3FWGRD.VCX/grdDataEntry.Refresh() -- new overriding code
No retrofitting required.
Modification: In order to stem the tide of bug reports on encountering the Open dialog in VMDECUS9.SCX, I added a MESSAGEBOX() to the process...
No retrofitting required
Enhancement: In coordination with the modifications to X3FW.VCX/grdBase in this version, all VM*.SCX forms have been modified to eliminate the extra blank pixel between the rightmost column and the vertical scrollbar.
Same modification made to X3FWFRM.VCX/frmUserMaintenance.
No retrofitting required
Modification: Replaced the X3SETREC.PRG call in X3FWCTRL.VCX/txtPickistValid.CustomValid() with a X3FWPPOP.VCX/cusPushPopRecno.
No retrofitting required
Enhancement: Added the status bar/clock to the basic VM example application configuration. Revamped the system menu to make it look more like a typical system menu, incorporating MESSAGEs into the status bar.
No retrofitting required
Bug Fix: X3FWFRM.VCX/frmEventLog failed to create the required index tag on Column1 if there are no records in the view for the grid.
X3FWFRM.VCX/frmEventLog.Load()
No retrofitting required
Modification: Split out the X3FWCTRL.VCX/txtPicklistValid.CustomValid() code that creates the string to be SEEK()ed into its own method.
X3FWCTRL.VCX/txtPicklistValid.CustomValid() -- modified
X3FWCTRL.VCX/txtPicklistValid.GetSeekValue() -- new method
No retrofitting required
Bug Fix: Two scenarios in X3FWFRM.VCX/frmDataEntry.QueryUnload() were lacking an llRetVal=.f. statement.
No retrofitting required.
Enhancement: X3FWFRM.VCX/frmReportDestinationSPF has been revised/improved. Contains an instance of new class X3FWFRM.VCX/ctrReportDestinationSPF
No retrofitting required
New Feature: Reporting
Expanded REPORTCATALOG.Rep_FRX to C(25)
Expanded REPORTCATALOG.Rep_Name to C(60)
Added new field REPORTCATALOG.Rep_Class C(40)
New APPCONFIG record Ap_Item = "DefaultReportClass"
Replaced X3FWMAIN.PRG/tcReportsClass parameter with tcToolbarsClass (no more oReports class)
Removed X3FW.VCX/cusReports class
Removed X3FW.VCX/frmReportCatalog class
Deleted X3FWCTR.VCX
New X3FWMISC.VCX/frmReport class
New X3FWFRM.VCX/frmReportCatalog class
New X3FWMISC.VCX/ctrReportDestinationSPF class
New X3FWMISC.VCX/ctrGetFile class
Modified X3FW.VCX/frmData class
	icReportObjectClass
	icFRXFileName
	PrintReport()
Modified X3FWCTRL.VCX/cmdDataPrint.Click() to call THISFORM.PrintReport()
Retrofitting requires:
If you've been sending an explicit parameter #6 to X3FWMAIN.PRG from your main calling program, replace it with "cusToolbars,X3FW.VCX".
Add a record to your APPCONFIG/MYCONFIG.DBF:
 m.Ap_Item = "DefaultReportClass"
 m.Ap_ItemDTp = "C"
 m.Ap_ItemVal = "frmReport,X3FWMISC.VCX"
 m.Ap_ItemDsc = "[ClassName,.VCXFileName] for the default report object class"
 insert into MYCONFIG from memvar
Save off you existing X3FWCTR.VCX class, if you've used it.
Add the field Rep_Class C(40) to your existing xxREPCAT.DBF/REPORTCATALOG tables.
Expand REPORTCATALOG.Rep_FRX to C(25)
Expand REPORTCATALOG.Rep_Name to C(60)
 (X3FWDATA.PRG has been modified to make the REPORTCATALOG table modifications.)
If you want to start using this new reporting stuff:
Update everything as described above in the retrofitting instructions.
Create your reports as per the instructions in
	X3FWMISC.VCX/frmReport.zReadMe()
	X3FWFRM.VCX/frmReportCatalog.zReadMe()
	VMP.DOC documentation, How To Create/Add Reports section
Populate your REPORTCATALOG table
Add a menu option to instantiate your frmReportCatalog subclass
Populate whichever of the 2 new form properties is appropriate:
	icReportObjectClass
	icFRXFileName (ignored if icReportObjectClass is populated)	
Modification: Changed the name of the VM application subclass of oApp from ctrVMApplication to ctrVMApp, and moved it from a code DEFINE CLASS in VMMAIN.PRG to a visual class in VMFW.VCX.
No retrofitting required
Enhancement: Public memvar for a single hook object
Modified the code in VMDEUSR.SCX so that, instead of creating a new instance of VMHOOKS.VCX/cusUserSecurityInvisible each time a form control needs to hook to that behavior, they can all share a single hook object created as a public memvar (the first legitimate use for public memvars I've come across, besides global application-level objects).
No retrofitting required
New Feature: Selection-criteria objects
"Selection Criteria" objects, for use in creating filter expressions or SQL WHERE clauses or view parameters and optionally applying such to a specific alias in the current form or in the calling form, when used in a modal called form.
X3FWMISC.VCX/cusSelCriteria -- new class
X3FWMISC.VCX/ctrSelCriteria -- new class
X3FWMISC.VCX/frmSelCriteria -- new class
X3FW.VCX/frmBase.iaSelCriteriaContainers[] -- new property
X3FW.VCX/frmBase.RegisterSelCriteriaContainers() -- new method
X3FW.VCX/frmBase.Destroy() -- additional code to process iaSelCriteriaContainers[]
VM application examples (all available from menu selections):
VMFWMISC.VCX
VMSC.VCX
VMDECUSa.SCX
VMDECUSb.SCX
VMDECUSc.SCX
VMPKCUSa.SCX
No retrofitting required
Enhancement: X3FWCTRL.VCX/txtPicklistValid has been enhanced to allow for doing the lookup in a remote data table, via ODBC/SQL pass-thru.
X3FWCTRL.VCX/txtPicklistValid.ilQuickFill -- new property
X3FWCTRL.VCX/txtPicklistValid.iuOtherFieldValue -- new property
X3FWCTRL.VCX/txtPicklistValid.AlternateLookup() -- new method
No retrofitting required
Modification: Removed the lParameter statement in X3FWFRM.VCX/frmDataEntry. Then removed the send of the parameter from the calls to THISFORM.BoundControlsInteractiveChange() in the InteractiveChange() and ProgrammaticChange() of the following classes:
X3FWCTRL.VCX/opgBound
X3FWCTRL.VCX/chkBound
X3FWCTRL.VCX/edtBound
X3FWCTRL.VCX/lstBound
X3FWCTRL.VCX/cboDropDownBound
X3FWCTRL.VCX/txtBound
X3FWFRM.VCX/frmMemoEdit.edtBound1
X3FWGRD.VCX/grdDataEntry
Retrofitting requires making sure you don't have any stray calls to THISFORM.BoundControlsInteractiveChange(THIS), but since that's usually abstracted into the framework, you're not likely to have any/many. To hunt down any occurrences, DO X3DTSRCH, search on something like "sInteractiveChange(THIS".
Version 1.7 10/14/96
Enhancement: Added 2 protected properties and a protected method to X3FWGRD.VCX/grdDataEntry to facilitate messaging between it and the 2 commandbuttons that commonly accompany it. This allows for more generic usage of the 2 command buttons, without the container around them.
X3FWGRD.VCX/grdDataEntry.cmdObjRef() -- new protected method
X3FWGRD.VCX/grdDataEntry.icAddButtonName -- new protected property
X3FWGRD.VCX/grdDataEntry.icDeleteButtonName -- new protected property
X3FWGRD.VCX/grdDataEntry.AddRow() -- modified to call THIS.cmdObjRef("D")
X3FWGRD.VCX/ctrDEGridAddDelete.cmdAdd.Click() -- reset to default
No retrofitting required
MAJOR MODIFICATION: Trimmed a form class out of the X3FWFRM.VCX hierarchy:
X3FWFRM.VCX/frmDEFindNav -- removed!!
X3FWFRM.VCX/frmDEFindOne2Many -- redefined to inherit from X3FWFRM.VCX/frmDataEntrySCADO
X3FWFRM.VCX/frmDEFindOne2Many -- renamed to frmDEOne2Many
X3FWFRM.VCX/frmDataEntrySCADO -- added an instance of 	X3FWCTRL.VCX/cmdDataFind
X3FWFRM.VCX/frmDEGridNav -- added code to the newly-inherited <Find...> button's Refresh() to make it invisible
Retrofitting requires:
MAKE BACKUPS BEFORE UNDERTAKING ANY RETROFIT! A CLASS BROWSER/VIEW
CLASS CODE PRINTOUT CAN COME IN HANDY!
Redefine any subclasses/forms based on X3FWFRM.VCX/frmDEFindNav to now inherit from X3FWFRM.VCX/frmDataEntrySCADO. Don't forget to update any scope resolution operator callbacks accordingly. Use X3DTSRCH.PRG to find the string "FindNav".
Redefine any subclasses/forms based on X3FWFRM.VCX/frmDEFindOne2Many to now inherit from X3FWFRM.VCX/frmDEOne2Many. Don't forget to update any scope resolution operator callbacks accordingly. Use X3DTSRCH.PRG to find the string "One2Many"	
If you have forms/classes inheriting directly from frmDataEntrySCADO, and you don't want the newly-inherited <Find...> button, you'll have to visit those forms/classes and add the following code to the cmdFind.Refresh():
THIS.Visible = .f.
Modification: Changed X3FWCTRL.VCX/cmdDataPrint.Caption from "\<Print" to "\<Print..."
No retrofitting required
Modification: Changed X3FWPICK.VCX/cmdPicklistAdd.Caption from "\<Add" to "\<Add..."
No retrofitting required
MAJOR MODIFICATION!!! Eliminated the container from X3FWPICK.VCX/frmPicklist.
X3FWPICK.VCX/frmPicklist -- deleted the ctrGridPicklist1 object
X3FWPICK.VCX/frmPicklist -- added an instance of grdPicklist
X3FWPICK.VCX/frmPicklist -- added an instance of txtPicklistFind
X3FWPICK.VCX/frmPicklist -- added an instance of X3FW.VCX/lblBase
There are 2 retrofit options. MAKE BACKUPS BEFORE UNDERTAKING ANY RETROFIT! A CLASS BROWSER/VIEW CLASS CODE PRINTOUT CAN COME IN HANDY!
1- move your existing X3FWPICK.VCX/frmPicklist class to a separate .VCX, something like X3OBS.VCX, for classes that become obsolete because we delete them, but you want to keep them around to keep from having to retrofit. This may be your best option for apps already in production. You'll have to redefine your existing subclasses/forms to inherit from the frmPicklist you've just moved to another .VCX. Hack the .SCX/.VCX and update the ClassLoc field, or use the Class Browser to redefine.
2- use the new stuff in this version. After installing this new version 1.7 and BEFORE MODIFYING any affected .SCXs/.VCXs, run this program on each .SCX based on a class ultimately inheriting from X3FWPICK.VCX/frmPicklist (do a CLEAR ALL/CLOSE ALL first):
*
* PICKUPDT.PRG
* Update .SCXs of forms based on frmPicklist
*
lparameters tcSCX
use (tcSCX) exclusive
locate for upper(baseclass) = "FORM"
create cursor HACK (StartProp M, EndProp M, StartMeth M, EndMeth M)
select HACK
append blank
select (tcSCX)
replace HACK.StartProp with Properties
local lnSetMemo
lnSetMemo = set("MEMOWIDTH")
set memowidth to 300
_mline = 0
local xx, lnLines, lcLine, lnStart, lnStop, lcLeft, lcRight
select HACK
lnLines = memlines(HACK.StartProp)
llEliminate = .t.
FOR xx = 1 to lnLines
 IF xx # 1 AND !llEliminate
 replace HACK.EndProp with HACK.EndProp + chr(13) + chr(10)
 ENDIF
 lcLine = mline(HACK.StartProp,1,_mline)
 IF "CTRGRIDPICKLIST1." $ upper(lcLine) AND occurs(".",lcLine)>1
 lnStart = at_c("CTRGRIDPICKLIST1.",upper(lcLine))
 lnStop = lnStart + lenc("CTRGRIDPICKLIST1.")
 IF lnStart > 1
 lcLeft = leftc(lcLine,lnStart-1)
 ELSE
 lcLeft = space(0)
 ENDIF
 lcRight = substr(lcLine,lnStop)
 lcLine = lcLeft + lcRight
 ENDIF
 IF "CTRGRIDPICKLIST1." $ upper(lcLine) AND occurs(".",lcLine)=1
 llEliminate = .t.
 ELSE
 llEliminate = .f.
 ENDIF
 IF !llEliminate
 replace HACK.EndProp with HACK.EndProp + lcLine
 ENDIF
ENDFOR

select (tcSCX)
replace Properties with HACK.EndProp

SCAN FOR !empty(TimeStamp)

IF !"CTRGRIDPICKLIST1" $ upper(Methods)
 loop
ENDIF

replace HACK.StartMeth with Methods
replace HACK.EndMeth with space(0)

lnLines = memlines(HACK.StartMeth)
_mline = 0
FOR xx = 1 to lnLines
 IF xx # 1 AND !llEliminate
 replace HACK.EndMeth with HACK.EndMeth + chr(13) + chr(10)
 ENDIF
 lcLine = mline(HACK.StartMeth,1,_mline)
 IF lcLine = "*"
 ELSE
 IF "CTRGRIDPICKLIST1." $ upper(lcLine) &&& AND occurs(".",lcLine)>1
 lnStart = at_c("CTRGRIDPICKLIST1.",upper(lcLine))
 lnStop = lnStart + lenc("CTRGRIDPICKLIST1.")
 IF lnStart > 1
 lcLeft = leftc(lcLine,lnStart-1)
 ELSE
 lcLeft = space(0)
 ENDIF
 lcRight = substr(lcLine,lnStop)
 lcLine = lcLeft + lcRight
 ENDIF
 ENDIF
 replace HACK.EndMeth with HACK.EndMeth + lcLine
ENDFOR

select (tcSCX)
replace Methods with HACK.EndMeth

ENDSCAN
set memowidth to (lnSetMemo)
close all
compile form (tcSCX)
clear all
return

The above PICKUPDT.PRG fixes up everything in your .SCXs.
Or you can make the changes manually, hacking your .SCXs and .VCXs. It's pretty straightforward:
	use <MySCX or VCX>
	brow for "CTRGRIDPICKLIST1" $ upper(Properties)
and remove the ctrGridPicklist1 container references in the containership hierarchy, also remove the line that sets its Name property
	brow for "CTRGRIDPICKLIST1" $ upper(Methods)
and remove the ctrGridPicklist1 container references in the containership hierarchy, also any methods that belong to ctrGridPicklist1, but you'll need to move them somewhere else manually so you don't lose them altogether. Although, you probably don't have any method code belonging to the container itself. Don't forget to COMPILE FORM <MySCX or VCX> when you've finished hacking.
You can hunt down stray references to ctrgridpicklist1 via X3DTSRCH.PRG
You'll still have any THIS.PARENT-type references to the now-deleted ctrGridPicklist1 left to find and fix, but there really shouldn't be many, if any.
If you've added method code to the ctrGridPicklist1 instance in any of these forms, it is left in the Methods field of the .SCX by PICKUPDT.PRG. You'll need to remove it manually and recompile. Save it first so you can find a new home for it now that the container is history. The X3DTSRCH described above should find any of these. I have never added such container code, but you may have. Also, any members you've added to ctrGridPicklist1 will now be at the same level of containership as the grdPicklist1, and you might have some adjustments to make.
You'll have to visit each form that inherits from frmPicklist and fix the Top and Left properties of the grid, textbox, and label that used to be in the container. I didn't have time to write the code that would have preserved their locations... And you may have to redefine your tab order.
Modification: Added an explicit call to X1LFM.PRG to X3FWFRM.VCX/frmUserMaintenance so it will be pulled into any .PJX.
No retrofitting required.
Modification: Set X3FWFRM.VCX/frmEventLog.ilAllowMultipleInstances to default (.F.)
No retrofitting required
Bug Fix: Added an AND condition to test in the first CASE of X3FWFRM.VCX/frmDataEntry.QueryUnload()
No retrofitting required
MAJOR MODIFICATION!!! Eliminated the container from X3FWFRM.VCX/frmDEGridNavNoPages and frmDEGridNav2Pages
X3FWFRM.VCX/grdNavigate -- new class
X3FWFRM.VCX/txtGridNavFind -- new class
X3FWFRM.VCX/ctrDEFormNavGrid -- deleted class
X3FWFRM.VCX/frmDEGridNavNoPages -- removed the ctrDEFormNavGrid container
X3FWFRM.VCX/frmDEGridNavNoPages -- added an instance of grdNavigate, named "grdNav"
X3FWFRM.VCX/frmDEGridNavNoPages -- added an instance of txtGridNavFind
X3FWFRM.VCX/frmDEGridNavNoPages -- added an instance of X3FW.VCX/lblBase

There are 2 retrofit options.
MAKE BACKUPS BEFORE UNDERTAKING ANY RETROFIT! A CLASS BROWSER/VIEW
CLASS CODE PRINTOUT CAN COME IN HANDY!
1- move the affected classes to a separate .VCX, something like X3OBS.VCX, for classes that become obsolete because we delete them, but you want to keep them around to keep from having to retrofit.
X3FWFRM.VCX/frmDEGridNav2Pages
X3FWFRM.VCX/frmDEGridNavNoPages
X3FWFRM.VCX/ctrDEFormNavGrid
This may be your best option for apps already in production. You'll have to redefine your existing subclasses/forms to inherit from the correct X3OBS.VCX. Hack the .SCX/.VCX and update the ClassLoc field, or use the Class Browser to redefine classes. The only way to redefine the instance of ctrDEFormNavGrid is to do so in the .VCX of your first subclasses of frmDEGridNav2Pages and frmDEGridNavNoPages out of the framework.
If you select this option, here is a little code you should put in the frmDEGridNavNoPages.ctrDEFormNavGrid.grdPicklist1.SeekValue():
	lparameters tcValueToSeek, toControl
	ctrDEFormNavGrid.grdPicklist1::SeekValue(tcValueToSeek,toControl)
	*
	* update the bound controls
	*
	THISFORM.inLastRefreshedRecno = 0
	THISFORM.tmrPauseGridRefresh1.Timer()
2- use the new stuff in this version. After installing this new version 1.6 and BEFORE MODIFYING any affected .SCXs/.VCXs, run this program on each .SCX based on a class ultimately inheriting from X3FWFRM.VCX/frmDEGridNavNoPages (do a CLEAR ALL/CLOSE ALL first):
*
* GNNPUPDT.PRG
* Update .SCXs of forms based on frmDEGridNavNoPages
*
lparameters tcSCX
use (tcSCX) exclusive
locate for upper(baseclass) = "FORM"
create cursor HACK (StartProp M, EndProp M, StartMeth M, EndMeth M)
select HACK
append blank
select (tcSCX)
replace HACK.StartProp with Properties
local lnSetMemo
lnSetMemo = set("MEMOWIDTH")
set memowidth to 300
_mline = 0
local xx, lnLines, lcLine, lnStart, lnStop, lcLeft, lcRight

* eliminate the ctrDEFormNavGrid1 container

select HACK
lnLines = memlines(HACK.StartProp)
llEliminate = .t.
FOR xx = 1 to lnLines
 IF xx # 1 AND !llEliminate
 replace HACK.EndProp with HACK.EndProp + chr(13) + chr(10)
 ENDIF
 lcLine = mline(HACK.StartProp,1,_mline)
 IF "CTRDEFORMNAVGRID1." $ upper(lcLine) AND occurs(".",lcLine)>1
 lnStart = at_c("CTRDEFORMNAVGRID1.",upper(lcLine))
 lnStop = lnStart + lenc("CTRDEFORMNAVGRID1.")
 IF lnStart > 1
 lcLeft = leftc(lcLine,lnStart-1)
 ELSE
 lcLeft = space(0)
 ENDIF
 lcRight = substr(lcLine,lnStop)
 lcLine = lcLeft + lcRight
 ENDIF
 IF "CTRDEFORMNAVGRID1." $ upper(lcLine) AND occurs(".",lcLine)=1
 llEliminate = .t.
 ELSE
 llEliminate = .f.
 ENDIF
 IF !llEliminate
 replace HACK.EndProp with HACK.EndProp + lcLine
 ENDIF
ENDFOR

select (tcSCX)
replace Properties with HACK.EndProp

SCAN FOR !empty(TimeStamp)

IF ! "CTRDEFORMNAVGRID1" $ upper(Methods)
 loop
ENDIF

replace HACK.StartMeth with Methods
replace HACK.EndMeth with space(0)

lnLines = memlines(HACK.StartMeth)
_mline = 0
FOR xx = 1 to lnLines
 IF xx # 1
 replace HACK.EndMeth with HACK.EndMeth + chr(13) + chr(10)
 ENDIF
 lcLine = mline(HACK.StartMeth,1,_mline)
 IF lcLine = "*"
 ELSE
 IF "CTRDEFORMNAVGRID1." $ upper(lcLine) &&& AND occurs(".",lcLine)>1
 lnStart = at_c("CTRDEFORMNAVGRID1.",upper(lcLine))
 lnStop = lnStart + lenc("CTRDEFORMNAVGRID1.")
 IF lnStart > 1
 lcLeft = leftc(lcLine,lnStart-1)
 ELSE
 lcLeft = space(0)
 ENDIF
 lcRight = substr(lcLine,lnStop)
 lcLine = lcLeft + lcRight
 ENDIF
 ENDIF
 IF !llEliminate
 replace HACK.EndMeth with HACK.EndMeth + lcLine
 ENDIF
ENDFOR

select (tcSCX)
replace Methods with HACK.EndMeth

ENDSCAN

* change "grdPicklist1" refrences to "grdNav"

select (tcSCX)
locate for upper(baseclass) = "FORM"
replace HACK.StartProp with Properties, ;
 HACK.EndProp with space(0)
select HACK
_mline = 0
lnLines = memlines(HACK.StartProp)
FOR xx = 1 to lnLines
 IF xx > 1
 replace HACK.EndProp with HACK.EndProp + chr(13) + chr(10)
 ENDIF
 lcLine = mline(HACK.StartProp,1,_mline)
 IF "GRDPICKLIST1" $ upper(lcLine)
 lnStart = at_c("GRDPICKLIST1",upper(lcLine))
 lnStop = lnStart + lenc("GRDPICKLIST1")
 IF lnStart > 1
 lcLeft = leftc(lcLine,lnStart-1)
 ELSE
 lcLeft = space(0)
 ENDIF
 lcRight = substr(lcLine,lnStop)
 lcLine = lcLeft + "grdNav" + lcRight
 IF "NAME" $ upper(lcLine) AND "GRDNAV.NAME" $ upper(lcLine)
 lcLine = [grdNav.Name = "grdNav"]
 ENDIF
 ENDIF
 replace HACK.EndProp with HACK.EndProp + lcLine
ENDFOR

select (tcSCX)
replace Properties with HACK.EndProp

select (tcSCX)
replace Properties with HACK.EndProp

SCAN FOR !empty(TimeStamp)

IF ! "GRDPICKLIST1" $ upper(Methods)
 loop
ENDIF

replace HACK.StartMeth with Methods
replace HACK.EndMeth with space(0)

_mline = 0
lnLines = memlines(HACK.StartMeth)
FOR xx = 1 to lnLines
 IF xx # 1
 replace HACK.EndMeth with HACK.EndMeth + chr(13) + chr(10)
 ENDIF
 lcLine = mline(HACK.StartMeth,1,_mline)
 IF lcLine = "*"
 ELSE
 IF "GRDPICKLIST1." $ upper(lcLine) &&& AND occurs(".",lcLine)>1
 lnStart = at_c("GRDPICKLIST1.",upper(lcLine))
 lnStop = lnStart + lenc("GRDPICKLIST1.")
 IF lnStart > 1
 lcLeft = leftc(lcLine,lnStart-1)
 ELSE
 lcLeft = space(0)
 ENDIF
 lcRight = substr(lcLine,lnStop)
 lcLine = lcLeft + "grdNav." + lcRight
 ENDIF
 ENDIF
 replace HACK.EndMeth with HACK.EndMeth + lcLine
ENDFOR

select (tcSCX)
replace Methods with HACK.EndMeth

ENDSCAN

set memowidth to (lnSetMemo)
close all
compile form (tcSCX)
clear all
return

The above GNNPUPDT.PRG fixes up everything in your .SCXs based on frmDEGridNavNoPages.
Run the following program on each .SCX based on a class ultimately inheriting from X3FWFRM.VCX/frmDEGridNav2Pages (do a CLEAR ALL/CLOSE ALL first):
*
* GN2PUPDT.PRG
* Update .SCXs of forms based on frmDEGridNav2Pages
*
lparameters tcSCX
use (tcSCX) exclusive
locate for upper(baseclass) = "FORM"
create cursor HACK (StartProp M, EndProp M, StartMeth M, EndMeth M)
select HACK
append blank
select (tcSCX)
replace HACK.StartProp with Properties
local lnSetMemo
lnSetMemo = set("MEMOWIDTH")
set memowidth to 300
_mline = 0
local xx, lnLines, lcLine, lnStart, lnStop, lcLeft, lcRight

* eliminate the ctrDEFormNavGrid1 container

select HACK
lnLines = memlines(HACK.StartProp)
llEliminate = .t.
FOR xx = 1 to lnLines
 IF xx # 1 AND !llEliminate
 replace HACK.EndProp with HACK.EndProp + chr(13) + chr(10)
 ENDIF
 lcLine = mline(HACK.StartProp,1,_mline)
 llEliminate = .f.
 IF "CTRDEFORMNAVGRID1." $ upper(lcLine) AND occurs(".",lcLine)>1
 IF "NAME" $ upper(lcLine) AND "CTRDEFORMNAVGRID1.NAME" $ upper(lcLine)
 llEliminate = .t.
 ELSE
 lnStart = at_c("CTRDEFORMNAVGRID1.",upper(lcLine))
 lnStop = lnStart + lenc("CTRDEFORMNAVGRID1.")
 IF lnStart > 1
 lcLeft = leftc(lcLine,lnStart-1)
 ELSE
 lcLeft = space(0)
 ENDIF
 lcRight = substr(lcLine,lnStop)
 lcLine = lcLeft + lcRight
 ENDIF
 ENDIF
 IF "CTRDEFORMNAVGRID1." $ upper(lcLine) AND occurs(".",lcLine)=1
 llEliminate = .t.
 ENDIF
 IF !llEliminate
 replace HACK.EndProp with HACK.EndProp + lcLine
 ENDIF
ENDFOR

select (tcSCX)
replace Properties with HACK.EndProp

SCAN FOR !empty(TimeStamp)

IF ! "CTRDEFORMNAVGRID1" $ upper(Methods)
 loop
ENDIF

replace HACK.StartMeth with Methods
replace HACK.EndMeth with space(0)

lnLines = memlines(HACK.StartMeth)
_mline = 0
FOR xx = 1 to lnLines
 IF xx # 1
 replace HACK.EndMeth with HACK.EndMeth + chr(13) + chr(10)
 ENDIF
 lcLine = mline(HACK.StartMeth,1,_mline)
 IF lcLine = "*"
 ELSE
 IF "CTRDEFORMNAVGRID1." $ upper(lcLine) &&& AND occurs(".",lcLine)>1
 lnStart = at_c("CTRDEFORMNAVGRID1.",upper(lcLine))
 lnStop = lnStart + lenc("CTRDEFORMNAVGRID1.")
 IF lnStart > 1
 lcLeft = leftc(lcLine,lnStart-1)
 ELSE
 lcLeft = space(0)
 ENDIF
 lcRight = substr(lcLine,lnStop)
 lcLine = lcLeft + lcRight
 ENDIF
 ENDIF
 IF !llEliminate
 replace HACK.EndMeth with HACK.EndMeth + lcLine
 ENDIF
ENDFOR

select (tcSCX)
replace Methods with HACK.EndMeth

ENDSCAN

* change "grdPicklist1" refrences to "grdNav"

select (tcSCX)
locate for upper(baseclass) = "FORM"
replace HACK.StartProp with Properties, ;
 HACK.EndProp with space(0)
select HACK
_mline = 0
lnLines = memlines(HACK.StartProp)
FOR xx = 1 to lnLines
 IF xx > 1
 replace HACK.EndProp with HACK.EndProp + chr(13) + chr(10)
 ENDIF
 lcLine = mline(HACK.StartProp,1,_mline)
 IF "GRDPICKLIST1" $ upper(lcLine)
 lnStart = at_c("GRDPICKLIST1",upper(lcLine))
 lnStop = lnStart + lenc("GRDPICKLIST1")
 IF lnStart > 1
 lcLeft = leftc(lcLine,lnStart-1)
 ELSE
 lcLeft = space(0)
 ENDIF
 lcRight = substr(lcLine,lnStop)
 lcLine = lcLeft + "grdNav" + lcRight
 IF "NAME" $ upper(lcLine) AND "GRDNAV.NAME" $ upper(lcLine)
 lcLine = [pgfPageRefresh1.Page1.grdNav.Name = "grdNav"]
 ENDIF
 ENDIF
 replace HACK.EndProp with HACK.EndProp + lcLine
ENDFOR

select (tcSCX)
replace Properties with HACK.EndProp

select (tcSCX)
replace Properties with HACK.EndProp

SCAN FOR !empty(TimeStamp)

IF ! "GRDPICKLIST1" $ upper(Methods)
 loop
ENDIF

replace HACK.StartMeth with Methods
replace HACK.EndMeth with space(0)

_mline = 0
lnLines = memlines(HACK.StartMeth)
FOR xx = 1 to lnLines
 IF xx # 1
 replace HACK.EndMeth with HACK.EndMeth + chr(13) + chr(10)
 ENDIF
 lcLine = mline(HACK.StartMeth,1,_mline)
 IF lcLine = "*"
 ELSE
 IF "GRDPICKLIST1." $ upper(lcLine) &&& AND occurs(".",lcLine)>1
 lnStart = at_c("GRDPICKLIST1.",upper(lcLine))
 lnStop = lnStart + lenc("GRDPICKLIST1.")
 IF lnStart > 1
 lcLeft = leftc(lcLine,lnStart-1)
 ELSE
 lcLeft = space(0)
 ENDIF
 lcRight = substr(lcLine,lnStop)
 lcLine = lcLeft + "grdNav." + lcRight
 ENDIF
 ENDIF
 replace HACK.EndMeth with HACK.EndMeth + lcLine
ENDFOR

select (tcSCX)
replace Methods with HACK.EndMeth

ENDSCAN

set memowidth to (lnSetMemo)
close all
compile form (tcSCX)
clear all
return

If you've made subclass modifications in subclasses (.VCXs) of X3FWFRM.VCX/frmDEGridNavNoPages or frmDEGridNav2Page that provide inheritance to the above .SCXs, you still have to update the form classes in those .VCXs. Below you'll find a VCXUPDT.PRG that works on classes inheriting from frmDEGridNav2Pages, and it may also work on classes inheriting from frmDEGridNavNoPages, but since I didin't have any of those, I can't tell you I've tested that.
Or you can make the changes manually, hacking your .SCXs and .VCXs. It's pretty straightforward:
	use <MySCX or VCX>
	brow for "CTRDEFORMNAVGRID1" $ upper(Properties)
and remove the ctrDEFormNavGrid1 container references in the containership hierarchy, also remove the line that sets its Name property
	brow for "CTRDEFORMNAVGRID1" $ upper(Methods)
and remove the ctrDEFormNavGrid1 container references in the containership hierarchy, also any methods that belong to ctrDEFormNavGrid1, but you'll need to move them somewhere else manually so you don't lose them altogether. Although, you probably don't have any method code belonging to the container itself.
Don't forget to COMPILE FORM <MySCX or VCX> when you've finished hacking.
You can hunt down stray references to ctrDEFormNavGrid1 and/or grdPicklist1 via X3DTSRCH.PRG
You'll still have any THIS.PARENT-type references to the now-deleted ctrDEFormNavGrid1 left to find and fix, but there really shouldn't be many, if any.
Any remaining references to "grdPicklist1" should be changed to "grdNav" (but beware if you X3DTSRCH to find “grdPicklist1” that there are still valid “grdPicklist1” references in forms inheriting from X3FWPICK.VCX/frmPicklist)
If you've added method code to the ctrDEFormNavGrid1 instance in any of these forms or classes, it is left in the Methods field of the .SCX/.VCX by the accompanying update programs. You'll need to remove it manually and recompile. Save it first so you can find a new home for it now that the container is history. The X3DTSRCH described above should find any of these. I have never added such container code, but you may have. Also, any members you've added to ctrDEFormNavGrid1 will now be at the same level of containership as the grdNav, and you might have some adjustments to make.
You'll have to visit each form that inherits from frmDEGridNavNoPages or frmDEGridNav2Pages and fix the Top and Left properties of the grid, textbox, and label that used to be in the container. I didn't have time to write the code that would have preserved their locations...
And you may have to redefine your tab order.
Here's a .PRG that makes the ctrDEFormNavGrid1 removal and grdPicklist->grdNav name change on the passed .VCX. You might find it helpful if you have a subclass of frmDEGridNav2Pages you want to update. I used it successfully on X3FWFRM.VCX to update frmEventLog and frmUserMaintenance, the only thing left to do was fix up the positioning of the grid, textbox, and label on Page1.
*
* VCXUPDT.PRG
* Eliminate ctrDEFormNavGrid1 container from the
* passed .VCX, also rename grdPicklist1 to grdNav
*
* NOTE: THIS HAS ONLY BEEN TESTED ON CLASSES INHERITING
* FROM frmDEGridNav2Pages. USE IT FOR CLASSES
* INHERITING FROM frmDEGridNavNoPages AT YOUR OWN
* RISK!!!!
*
lparameters tcSCX
local xx, lnLines, lcLine, lnStart, lnStop, lcLeft, lcRight
local lnSetMemo
lnSetMemo = set("MEMOWIDTH")
set memowidth to 300
create cursor HACK (StartProp M, EndProp M, StartMeth M, EndMeth M)
select HACK
append blank
use (tcSCX) exclusive in 0
select (tcSCX)
*locate for upper(baseclass) = "FORM"

* eliminate the ctrDEFormNavGrid1 container

SCAN FOR upper(baseclass) = "FORM"

replace HACK.StartProp with Properties, HACK.EndProp with space(0)
_mline = 0

lnLines = memlines(HACK.StartProp)
llEliminate = .t.
FOR xx = 1 to lnLines
 IF xx # 1 AND !llEliminate
 replace HACK.EndProp with HACK.EndProp + chr(13) + chr(10)
 ENDIF
 lcLine = mline(HACK.StartProp,1,_mline)
 llEliminate = .f.
 IF "CTRDEFORMNAVGRID1." $ upper(lcLine) AND occurs(".",lcLine)>1
 IF "NAME" $ upper(lcLine) AND "CTRDEFORMNAVGRID1.NAME" $ upper(lcLine)
 llEliminate = .t.
 ELSE
 lnStart = at_c("CTRDEFORMNAVGRID1.",upper(lcLine))
 lnStop = lnStart + lenc("CTRDEFORMNAVGRID1.")
 IF lnStart > 1
 lcLeft = leftc(lcLine,lnStart-1)
 ELSE
 lcLeft = space(0)
 ENDIF
 lcRight = substr(lcLine,lnStop)
 lcLine = lcLeft + lcRight
 ENDIF
 ENDIF
 IF "CTRDEFORMNAVGRID1." $ upper(lcLine) AND occurs(".",lcLine)=1
 llEliminate = .t.
 ENDIF
 IF !llEliminate
 replace HACK.EndProp with HACK.EndProp + lcLine
 ENDIF
ENDFOR

select (tcSCX)
replace Properties with HACK.EndProp

ENDSCAN

select (tcSCX)

SCAN FOR !empty(TimeStamp)

IF ! "CTRDEFORMNAVGRID1" $ upper(Methods)
 loop
ENDIF

replace HACK.StartMeth with Methods
replace HACK.EndMeth with space(0)

lnLines = memlines(HACK.StartMeth)
_mline = 0
FOR xx = 1 to lnLines
 IF xx # 1
 replace HACK.EndMeth with HACK.EndMeth + chr(13) + chr(10)
 ENDIF
 lcLine = mline(HACK.StartMeth,1,_mline)
 IF lcLine = "*"
 ELSE
 IF "CTRDEFORMNAVGRID1." $ upper(lcLine) &&& AND occurs(".",lcLine)>1
 lnStart = at_c("CTRDEFORMNAVGRID1.",upper(lcLine))
 lnStop = lnStart + lenc("CTRDEFORMNAVGRID1.")
 IF lnStart > 1
 lcLeft = leftc(lcLine,lnStart-1)
 ELSE
 lcLeft = space(0)
 ENDIF
 lcRight = substr(lcLine,lnStop)
 lcLine = lcLeft + lcRight
 ENDIF
 ENDIF
 IF !llEliminate
 replace HACK.EndMeth with HACK.EndMeth + lcLine
 ENDIF
ENDFOR

select (tcSCX)
replace Methods with HACK.EndMeth

ENDSCAN

* change "grdPicklist1" refrences to "grdNav"

select (tcSCX)
*locate for upper(baseclass) = "FORM"

SCAN FOR upper(baseclass) = "FORM"

replace HACK.StartProp with Properties, ;
 HACK.EndProp with space(0)
*select HACK
_mline = 0
lnLines = memlines(HACK.StartProp)
FOR xx = 1 to lnLines
 IF xx > 1
 replace HACK.EndProp with HACK.EndProp + chr(13) + chr(10)
 ENDIF
 lcLine = mline(HACK.StartProp,1,_mline)
 IF "GRDPICKLIST1" $ upper(lcLine)
 lnStart = at_c("GRDPICKLIST1",upper(lcLine))
 lnStop = lnStart + lenc("GRDPICKLIST1")
 IF lnStart > 1
 lcLeft = leftc(lcLine,lnStart-1)
 ELSE
 lcLeft = space(0)
 ENDIF
 lcRight = substr(lcLine,lnStop)
 lcLine = lcLeft + "grdNav" + lcRight
 IF "NAME" $ upper(lcLine) AND "GRDNAV.NAME" $ upper(lcLine)
 lcLine = [pgfPageRefresh1.Page1.grdNav.Name = "grdNav"]
 ENDIF
 ENDIF
 replace HACK.EndProp with HACK.EndProp + lcLine
ENDFOR

select (tcSCX)
replace Properties with HACK.EndProp

select (tcSCX)
replace Properties with HACK.EndProp

ENDSCAN

select (tcSCX)

SCAN FOR !empty(TimeStamp)

IF ! "GRDPICKLIST1" $ upper(Methods)
 loop
ENDIF

replace HACK.StartMeth with Methods
replace HACK.EndMeth with space(0)

_mline = 0
lnLines = memlines(HACK.StartMeth)
FOR xx = 1 to lnLines
 IF xx # 1
 replace HACK.EndMeth with HACK.EndMeth + chr(13) + chr(10)
 ENDIF
 lcLine = mline(HACK.StartMeth,1,_mline)
 IF lcLine = "*"
 ELSE
 IF "GRDPICKLIST1." $ upper(lcLine) &&& AND occurs(".",lcLine)>1
 lnStart = at_c("GRDPICKLIST1.",upper(lcLine))
 lnStop = lnStart + lenc("GRDPICKLIST1.")
 IF lnStart > 1
 lcLeft = leftc(lcLine,lnStart-1)
 ELSE
 lcLeft = space(0)
 ENDIF
 lcRight = substr(lcLine,lnStop)
 lcLine = lcLeft + "grdNav." + lcRight
 ENDIF
 ENDIF
 replace HACK.EndMeth with HACK.EndMeth + lcLine
ENDFOR

select (tcSCX)
replace Methods with HACK.EndMeth

ENDSCAN

set memowidth to (lnSetMemo)
close all
compile form (tcSCX)
clear all
return

Bug fix: VPF5 has a bug regarding Label.Width, and in the process of diagnosing and working around the bug, the following were updated:
X3FWLIBS.VCX/cusControlSize.GetTextHW()
X3FWFRM.VCX/frmGetInputItem.PositionControls()
No retrofitting required.
Bug fix: The X3FWCTRL.VCX/txtPicklistValid.ilPreserveSeekAliasRecno logic was old, predating the "quickfill" functionality, and therefore didn't properly reset the RECNO() as advertised.
X3FWCTRL.VCX/txtPicklistValid.CustomValid() -- removed the recno-saving code
X3FWCTRL.VCX/txtPicklistValid.GotFocus() -- added recno-saving code
X3FWCTRL.VCX/txtPicklistValid.LostFocus() -- added the recno-reset code
X3FWCTRL.VCX/txtPicklistValid.inInitialSeekAliasRecno -- new property
No retrofitting required.
Bug Fix: Added a missing AND to X3FWMISC.VCX/ctrSetCriteria.Init()
No retrofitting required.
Modification: Modified the X3FWPICK.VCX/grdPicklist.ColumnX.Header1.DblClick() architecture to simplify it.
X3FWPICK.VCX/grdPicklist.CommonHeaderDblClick() -- new method
X3FWPICK.VCX/grdPicklist.Column1-10.Header1.DblClick() -- modified
No retrofitting required.
Kludge: Rewrote the code in X3FWPICK.VCX/grdPicklist.CommonHeaderDblClick() to improve performance and to work around the VFP5 restriction that SetFocus() cannot be called from the .Valid of a control...
No retrofitting required
Enhancement: Added a 5th parameter to X3FWMISC.VCX/frmSelCriteria.Init() to allow overriding/specifying the outermost contained ctrSelCriteria.ilApplyHere.
No retrofitting required
Modification: Migrated ilRequired and inRequiredBackColor properties from X3FWCTRL.VCX classes to parent X3FW.VCX/xxxBase classes:
X3FW.VCX/cboBase
X3FW.VCX/edtBase
X3FW.VCX/spnBase
X3FW.VCX/txtBase
No retrofitting required.
Modification: After finding a serious .AutoSize=.T. bug in VFP5 and finding out that there are bugs in VFP3.0b that I haven't run across but cause Steven Black to recommend against AutoSize=.T., .AutoSize has been reset to default for:
X3FW.VCX/chkBase
X3FW.VCX/lblBase
In case you're wondering, the VFP5 bug manifests itself in that if you change the Caption of a label for AutoSize=.T. at any time during the instantiation of the form, its Width property is never updated, rendering any kind of programmatic-positioning-logic useless.
Retrofitting requires manually sizing any labels for which you were depending on AutoSize to set the Width. If you have any, and need a dynamic way to sie their Width, check out X3FWLIBS.VCX/cusControlSize.GetTextHW().
Modification: Added ToolTipText to the <Add> and <Delete> buttons in X3FWGRD.VCX
No retrofitting required
Enhancement: Added a custom TimerAction() method to X3FWCTRL.VCX/tmrPause to allow easier subclassing of specific behaviors.
X3FWCTRL.VCX/tmrPauseGridRefresh
X3FWCTRL.VCX/tmrPauseKeystrokes
No retrofitting required
Enhancement: Changed the way THISFORM.Caption is updated, to do it as the record pointer moves, providing a visual clue of the current recno(THISFORM.icMainAlias) in the form Caption.
X3FWFRM.VCX/frmDataEntry.UpdateFormCaption -- changed the caption string creation logic using existing properties
X3FWFRM.VCX/grdNavigate -- AfterRowColChange and SeekValue code migrated from X3FWFRM.VCX/frmDEGridNavNoPages
X3FWFRM.VCX/frmDEGridNavNoPages -- inLastRefreshedRecno changed to inLastGridRow and migrated to X3FWFRM.VCX/frmDEGridNav
X3FWFRM.VCX/frmDEGridNav2Pages -- added an instance of X3FWCTRL.VCX/tmrGridPauseRefresh
This enhancement also allowed doing away with the Customer Name labels in VMDECUS4.SCX, making for a simpler form.
No retrofitting required unless you have done custom work with the now-renamed X3FWFRM.VCX/frmDEGridNav.inLastRefreshedRecno. If so, use X3DTSRCH to find "inLastRefreshedRecno" and change to "inLastGridRow".
Bug Fix: X3FWMISC.VCX/frmReport.Init() was incorrectly yielding a "Unable to process data and run this report" MESSAGEBOX() if the user pressed <Cancel> from a report output destination dialog.
X3FWMISC.VCX/frmReport.Init()
No retrofitting required.
Enhancement: Made modifications to improve performance of the FOR..ENDFOR loops in the following methods:
X3FWPICK.VCX/txtPicklistFind.SetGridName()
X3FWPICK.VCX/grdPicklist.RegisterWithTextbox()
X3FWGRD.VCX/cmdDEGrid.SetGridName()
X3FWGRD.VCX/grdDataEntry.RegisterWithButtons()
X3FWGRD.VCX/grdDataEntry.cmdObjRef()
X3FWMISC.VCX/frmSelCriteria.ProcessSelCriteria()
No retrofitting required
Enhancement: New data-entry form method for code to execute each time the form enters "edit mode".
X3FWFRM.VCX/frmDataEntry.OnEnterEditMode()
No retrofitting required.
Bug Fix: Fixed an {ESCAPE} keypress bug in X3FWCTRL.VCX/txtPicklistValid
X3FWCTRL.VCX/txtPicklistValid.Valid()
X3FWCTRL.VCX/txtPicklistValid.InterativeChange()
No retrofitting required
Version 1.8 10/17/96
Bug Fix: LockScreen from grids
The new stuff I put in a couple of versions ago to solve the one-extra-pixel-on-the-right problem in grids seems to still have a few places where you can end up with THISFORM.LockScreen=.t. after returning from a form called from a grid cell. I added a check for that situation in
X3FWCTRL.VCX/txtPicklistValid.DoPicklistForm()
X3FWCTRL.VCX/cmdCallMemoEditForm.Click()
X3FW.VCX/grdBase.Valid()
No retrofitting required
Major Enhancement: Toolbar support has been totally revised/upgraded.
All toolbar logic in X3FW.VCX/cusForms has been removed, and all that logic moved to the new X3FW.VCX/cusToolbars, which has additional features to support any number of global toolbars, and one linked toolbar per form. New toolbar class X3FWFRM.VCX/tbrSCADONav in Visual MaxFrame Professional parallels X3FWFRM.VCX/frmDataEntrySCADO.
X3FWFRM.VCX/tbrSCADONav -- new toolbar class
X3FWFRM.VCX/frmDataEntry.QueryUnload() -- modified
X3FWCTRL.VCX/cmdDataSave.Refresh() -- modified
X3FWCTRL.VCX/cmdDataCancel.Refresh() -- modified
X3FWCTRL.VCX/cmdNextPrevTopBottom -- deleted class
X3FWCTRL.VCX/cmdMovePointer -- new class replacing cmdNextPrevTopBottom
X3FWCTRL.VCX/cmdNext -- deleted class (see VMCTRL.VCX)
X3FWCTRL.VCX/cmdPrev -- deleted class (see VMCTRL.VCX)
X3FWCTRL.VCX/cmdTop -- deleted class (see VMCTRL.VCX)
X3FWCTRL.VCX/cmdBottom -- deleted class (see VMCTRL.VCX)
Retrofitting requires:
If you used X3FWCTRL.VCX/cmdNextPrevTopBott, you need to redefine subclasses and instances to inherit from the new cmdMovePointer. Also, since I deleted the individual commandbuttons from X3FWCTRL.VCX (Next/Prev/Top/Bott), you'll need to subclass cmdMovePointer as I've done in VMCTRL.VCX, and redefine subclasses/instances to inherit from there.
This is one that's OK to save off the classes I've deleted into an X3OBS.VCX for now if you want to. That includes X3FWLIBS.VCX/cusMoveRecord which was bogus because it relied on SET DATASESSION TO, etc.
Version 1.9 10/22/96
Enhancement: Modified X3FWFRM.VCX/frmReportCatalog.RunReport() to send an object reference to the report catalog form to the instantiated report object.
No retrofitting required
Bug Fix: Global toolbar buttons were improperly calling disabled options in the Event Log in the VM example application. The problem was in the commandbutton.Refresh() in X3FWFRM.VCX/frmEventLog
No retrofitting required
Bug Fix: Logic to set focus to the first data-entry control on <Add> on forms inheriting from frmDEGridNav2Pages needed reworking.
X3FWFRM.VCX/frmDEGridNav.UpdateFormOnAdd() -- modifed
X3FWFRM.VCX/frmDEGridNav2Pages.cmdAdd.Click() -- reset to default
No retrofitting required
Enhancement: Modified X3FWFRM.VCX/frmDataEntry.UpdateFormOnAdd() slightly to improve performance when the form contains data-entry grid(s).
No retrofitting required
Modification: Improved the set-focus-to-the-first-control behavior in X3FWFRM.VCX/frmDEGridNav2Pages.
X3FWFRM.VCX/frmDEGridNav2Pages.UpdateFormOnAdd() -- modified
X3FWFRM.VCX/frmDEGridNav2Pages.cmdAdd.Click() -- modified
No retrofitting required
New Feature: New class X3FWFRM.VCX/tbrGen as an abstract class to provide general toolbar features, incorporated them in X3FWFRM.VCX/tbrSCADONav
ControlSelection()
InitialDockPosition() -- changed to InitialPositioning
SetControlToolTipText() -- changed to SetToolTipText()
TrackLastPosition() -- changed to TrackAttributes()
IsActiveFormControlValid()
No retrofitting required unless you have already created toolbar subclasses inheriting from tbrBase and have used methods above that have been renamed or moved, etc.
Enhancement: Added hotkey designations for the optionbuttons in X3FWFRM.VCX/frmReportDestinationSPF.
No retrofitting required
Bug Fix: Fixed bugs in X3FWFRM.VCX/frmReportDestinationSPF and X3FWMISC.VCX/ctrReportDestinationSPF
No retrofitting required
Modification: Re-engineered the tbrSCADONav toolbar stuff in v1.8, it's pretty much all new in this version
No retrofitting required unless you started using the v1.8 stuff and did any modification/subclassing
Enhancement: The VM example application has a Tools/Global Toolbar example option on the menu, to allow toggling the example global toolbar on/off. The setting persists from session to session, on a per-user basis.
No retrofitting required
Version 1.91 10/22/96
Bug Fix: Fixed a bug in X3FWFRM.VCX/tbrSCADONav.LinkedMenu() that crashed when running a form standalone at the Command Window that specified a linked toolbar inheriting from tbrSCADONav.
No retrofitting required
Bug Fix: Fixed the spurious reference to "tbrdelete.bmp" as the Picture property of one of the commandbuttons in X3FWFRM.VCX/tbrSCADONav
No retrofitting required
Bug Fix: Fixed a toolbar.Destroy() bug, added a cusVMToolbars class definition to VMFW.VCX
No retrofitting required
Modification: Added a VMFW.VCX/cusMenu class for the oMenu.AfterInstallInitialMenu() stuff moved down from X3FW.VCX/cusMenu.AfterInstallMenu()
No retrofitting required
Modification: Added shortcut hotkeys to the menu options in VMMAIN.MNX that were lacking, also to the 3 menu options now added programmatically in VMFW.VCX/cusVMMenu.AfterInstallInitialMenu()
No retrofitting required
Modfication: rename cmdOK
X3FWCTRL.VCX/cmdOK has been renamed to cmd_OK. Our conventions call for not naming a subclass or an instance the same as a subclass somewhere in the hierarchy. However, our new toolbar stuff uses a cmdOK commandbutton frequently, so I decided the best thing for the long term is to rename this one cmdOK class.
Retrofitting is not difficult, and requires 2 steps.
Step 1 is to run the FINDOK.PRG program listed below in each directory where you have .SCXs and/or .VCXs that might have commandbuttons that inherit from X3FWCTRL.VCX/cmdOK. FINDOK.PRG will find instances and subclasses that inherit from X3FWCTRL.VCX/cmdOK and give you the option of fixing them.
Step 2 requires locating all "cmdOK::" references you may have in your class hierarchies, to replace them with "cmd_OK::". Use X3DTSRCH.PRG to find "cmdOK::" strings, then manually replace them.
*
* FINDOK.PRG
* Find (and optionally redefine) any subclasses
* or instances inheriting from X3FWCTRL.VCX/cmdOK
* in .SCXs and .VCXs in the current directory
*
clear all
close all
set excl on
clear
set safety off
local llFoundSCX, llFoundVCX
llFoundSCX = checkem("SCX")
llFoundVCX = checkem("VCX")
wait clear
IF !llFoundSCX AND !llFoundVCX
 =messagebox("You're clean, no subclasses/instances inherit from X3FWCTRL.VCX/cmdOK", ;
 48,"Congratulations!")
 return
ENDIF
IF messagebox("Fix up your X3FWCTRL.VCX/cmdOK references?", ;
 308,"Visual MaxFrame Professional") = 7
 return
ENDIF
IF llFoundSCX
 do fixem with "SCX"
ENDIF
IF llFoundVCX
 do fixem with "VCX"
ENDIF
=messagebox("You're clean -- all X3FWCTRL.VCX/cmdOK references have been changed to X3FWCTRL.VCX/cmdxxx... references",48,"Congratulations!")
return

PROCEDURE checkem
lparameters lcExtension
local laFiles[1]
local lcFileName, xx, lcExtension, lcClass, llFoundSome
lcClass = space(0)
lcExtension = "*." + lcExtension
IF adir(laFiles,lcExtension) > 1
 FOR xx = 1 to alen(laFiles,1)
 lcFileName = laFiles[xx,1]
 use (lcFileName)
 SCAN
 IF empty(parent)
 lcClass = objname
 ENDIF
 wait window lcFileName + space(2) + lcClass nowait
 IF "X3FWCTRL" $ upper(classloc) ;
 AND upper(alltrim(class)) == "CMDOK"
 wait window lcFileName + space(2) + lcClass + " contains CMDOK references"
 llFoundSome = .t.
 ENDIF
 ENDSCAN
 use
 ENDFOR
ENDIF
return llFoundSome

PROCEDURE fixem
lparameters lcExtension
local laFiles[1]
local lcFileName, xx, lcExtension, llCompile
lcExtension = "*." + lcExtension
IF adir(laFiles,lcExtension) > 1
 FOR xx = 1 to alen(laFiles,1)
 lcFileName = laFiles[xx,1]
 use (lcFileName)
 llCompile = .f.
 SCAN
 IF "X3FWCTRL" $ upper(classloc) ;
 AND upper(alltrim(class)) == "CMDOK"
 replace class with "cmd_OK"
 llCompile = .t.
 ENDIF
 ENDSCAN
 use
 IF llCompile
 compile form (lcFileName)
 ENDIF
 ENDFOR
ENDIF
return
In the course of making this modification, I renamed the following commandbuttons in the VMP framework:
X3FWMISC.VCX/frmSelCriteria.cmdSCOK --> cmdOK
X3FWMISC.VCX/frmSelCriteria.cmdSCCancel --> cmdCancel
X3FWFRM.VCX/frmReportCatalog.cmdOK2 --> cmdOK
X3FWFRM.VCX/frmGetInputItem.cmdBase1 --> cmdCancel
X3FWFRM.VCX/frmGetInputItem.cmdBase2 --> cmdOK
If you have subclassed any of the above and have added code that explicitly references any of the above renamed commandbuttons, you'll have to update those references to reflect the new names.
Modification: quickfill fix
X3FWCTRL.VCX/txtPicklistValid.InteractiveChange() had a recent modification that inadvertently turned on the "quickfill" behavior for all txtPicklistValid instances used as selection-criteria collectors.
No retrofitting required
New Feature: Additional selection-criteria example
The VM example application now has another selection-criteria example. When you select the Invoices report from theReport Catalog, you get a dialog in which you must select a group of invoices rather than a printout of all invoices.
VMREPRTS.VCX/frmVMInvl -- updated
VMSC.VCX/ctrSCInvoices -- new selection criteria container
VMSCINV.SCX -- new selection criteria dialog
No retrofitting required
Version 1.92 10/22/96
Modification: Set the default X3FWCTRL.VCX/cmdGetFile.ilAskIfOverwrite from .T. to .F.
No retrofitting required... unless you are using cmdGetFile somewhere and need ilAskIfOverWrite=.T.
Modification: Overhauled several components of the Screen/Printer/File destination container used in the Report Destination dialog and the Report Catalog form. Here are the ones I remember <g>:
X3FWMISC.VCX/ctrGetFile -- deleted the old cmdGetFile, replaced it with an instance of X3FWCTRL.VCX/cmdGetFile
X3FWMISC.VCX/ctrGetFile -- renamed the cmdGetFile to cmdGetFile1
X3FWMISC.VCX/ctrGetFile -- moved the txtFileName.Valid() code to LostFocus()
X3FWMISC.VCX/ctrReportDestinationSPF -- updated the cmdGetFile references to cmdGetFile1
X3FWMISC.VCX/ctrReportDestinationSPF -- updated the ctrGetFile references to ctrGetFile1
X3FWMISC.VCX/ctrReportDestinationSPF -- updated txtFileName.InteractiveChange() to refresh the <OK> button
X3FWFRM.VCX/frmReportDestinationSPF -- updated the ctrGetFile references to ctrGetFile1
X3FWFRM.VCX/frmReportCatalog -- updated the ctrGetFile references to ctrGetFile1
No retrofitting required unless you've subclassed any of these items and made explicit references to cmdGetFile and/or ctrGetFile, in which case they likely need to be changed to cmdGetFile1 and ctrGetFile1.
Bug Fix: timer bug
Modified
X3FWFRM.VCX/frmDEGridNav2Pages.pgfPageRefresh1.Page1.tmrPauseGridPicklist1.Timer()
to fix a bug that resulted in calling THISFORM.ShellRequeryMainViewAlias()
incorrectly
No retrofitting required
Bug Fix: VFP 5.0 pageframes
Modified the way focus is set to the first control on the pageframe in X3FWFRM.VCX/frmDEGridNav2Pages.Init() when run in VFP 5.0 -- the previous way of doing it fired methods that should not be firing.
No retrofitting required.
Version 1.93 10/24/96
Bug Fix: Report Catalog instantiation
In order to fix an intermittent bug manifesting itself as a syntax error on instantiating the Report Catalog from a menu selection, modified the construction of X3FWFRM.VCX/frmReportCatalog.
No retrofitting necessary unless you've subclassed X3FWFRM.VCX/frmReportCatalog.
Enhancement: The selection criteria stuff for Invoices in the VM example application has been enhanced. To see what's changed, try running the Invoices report on Page 2 of the Report Catalog.
VMSC.VCX/ctrSCInvoices
VMSCINV.SCX
No retrofitting required.
Version 1.94 10/25/96
Modification: Turned off the add-on-the-fly-from-picklists behavior in VFP 5.0 because of the new restriction on calling SetFocus() from the Valid() event. To be revisited in a future VFP version.
No retrofitting required.
Version 1.95 10/26/96
Modification: Added code to X3FWGRD.VCX/grdDataEntry.CascadeDelete() to ensure that child grids are REQUERY()ed properly so that manual cascade deletes work as expected.
X3FWGRD.VCX/grdDataEntry.CascadeDelete()
 .OnSaveAfterDeleteBlankRows()
 .zReadMe()
Retrofitting requires making sure grdDataEntry.icParentPKFieldName and grdDataEntry.icFKFieldName are populated correctly. I have REMOVED the code that defaulted these values according to MaxTech naming conventions, and have made them REQUIRED properties (see grdDataEntry.zReadMe). Just modify any forms/subclasses that use grdDataEntry for child records and check those 2 properties. Be careful what you set icParentPKFieldName to -- if your grid is a view and its parent is also open as a view, icParentPKFieldName is usually the PK field from the view, not the base table for the parent view (see grdDataEntry.zReadMe).
Enhancement: Added a property to X3FWGRD.VCX/grdDataEntry that, when set, speeds up Saves.
X3FWGRD.VCX/grdDataEntry.icPKFieldName
No retrofitting required, but if you do revisit your data-entry grids and set this property, the Saves on those forms will get a little faster.
Modification: Added an ActionOnValid() method to X3FWCTRL.VCX/edtBound and modified its CustomValid() accordingly, for consistency with other xxxBound controls that accept text for data entry.
No retrofitting required.
Modification: Added CustomValid() and ActionOnValid() methods to X3FWCTRL.VCX/chkBound and moved its Valid() code to CustomValid(). Now chkBound is designed like other xxxBound controls.
No retrofitting required unless you have subclasses/instances of X3FWCTRL.VCX/chkBound and have overridden/augmented the Valid.
New Feature: Added a spnBound class to X3FWCTRL.VCX
No retrofitting required

